Integrated Model of Palliative and Primary Care in Seriously Ill Older Adults
重病老年人的姑息治疗和初级保健综合模式
基本信息
- 批准号:9565691
- 负责人:
- 金额:$ 38.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdoptionAdvance Care PlanningArea Under CurveAwarenessBostonCaringCessation of lifeChronicChronic DiseaseClinicClinic VisitsClinical TrialsComplexComprehensive Health CareDataData AnalyticsDiagnosisDiseaseElderlyElectronic Health RecordEmergency Department patientEmergency SituationEnrollmentEventFaceGeriatricsHome environmentHospitalizationHospitalsInterventionLength of StayMachine LearningMalignant NeoplasmsMeasurableMeasuresMedicalMethodsModelingOlder PopulationOutcomePalliative CarePatient CarePatient Outcomes AssessmentsPatient riskPatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPopulationPopulation HeterogeneityPredictive ValuePrimary Health CareProceduresQuality of lifeRandomized Controlled TrialsRecordsReportingResearch DesignResourcesRiskRoleSF-12SamplingSeriesSpecialistStatistical ModelsSymptomsTechniquesTestingTextThinnessTimeValidationVisitWorkbaseclinical infrastructurecostdesignend of lifeend of life careevidence basefallshealth care service utilizationhigh riskhospice environmentimprovedimproved outcomeinterestintervention effectmortalitymultiple chronic conditionsnovelolder patientoncologyoutcome forecastpalliativepatient populationpatient subsetspredictive modelingprimary care settingprimary outcomeprognosticprogramsrandomized trialtrial comparing
项目摘要
Project Summary
Background Palliative care is known to improve patient outcomes and reduce health care utiliza-
tion in patients with cancer. But we know little on how to deliver palliative care to the large and
growing population of older patients with multiple chronic conditions. Palliative care clinicians are a
scarce resource, so care must be targeted to the subset of patients who would benefit most: those
at highest risk of near-term death. This is a major challenge outside of specific diseases with
known trajectories. Clinicians struggle with prognosis, and current statistical models perform poorly.
Aims We will use novel predictive modeling methods (`machine learning') to identify complex old-
er patients at high risk of one-year mortality, drawing on our team's prior work in data analytics and
machine learning. We will apply these methods to a diverse population of older patients with multi-
ple chronic conditions, in a large academic primary care network. Building on our team's track rec-
ord of successful clinical trials, we will conduct a randomized controlled trial of palliative care inte-
grated with primary care, targeting older patients at the highest predicted risk of death. We will as-
sess impact on a range of measurable patient-reported outcomes and health care utilization.
Study design We will develop a model to predict one-year mortality in primary care patients over
65, using a rich set of variables from electronic health records. Our preliminary data indicate that
machine learning models are highly accurate for predicting mortality out-of-sample, i.e., in patients
the model has never seen. We will identify patients at the highest risk of death—who would benefit
most from scarce palliative care resources—and approach them to participate in a randomized trial,
comparing usual primary care to primary care integrated with palliative care. The intervention, a
series of home-based visits by palliative care clinicians, will build a longitudinal relationship with the
patient and primary care team. This strategy is designed specifically to meet the needs of older pa-
tients, as well as busy primary care clinicians. We will power the study to detect changes in two
primary outcomes: quality of life and care intensity, measured by hospital and emergency visits.
Other outcomes include symptom burden, advanced care planning, hospice use, and mortality.
Implications This project will generate the first evidence on a new model of palliative care for
older adults with multiple chronic illnesses, delivered `upstream' in the disease trajectory. We will
build the technical and clinical infrastructure needed to target palliative care interventions for older
adults outside of specific disease-based programs. A successful trial would facilitate broader adop-
tion of similar interventions for older adults, and fundamentally transform the scale and scope of
palliative care efforts in this population.
项目摘要
众所周知,背景姑息治疗可改善患者的结果并减少医疗保健利用率 -
癌症患者的影响。但是我们对如何提供姑息治疗不了解
患有多种慢性病的老年患者的人口不断增长。姑息治疗临床医生是
稀缺的资源,因此必须关心将受益最大的患者子集作为目标:
近期死亡的最高风险。这是在特定疾病之外的主要挑战
已知轨迹。临床医生在预后挣扎,当前的统计模型的表现不佳。
目的我们将使用新颖的预测建模方法(“机器学习”)来识别复杂的旧 -
ER患者一年死亡的高风险,借鉴了我们团队先前在数据分析方面的工作
机器学习。我们将把这些方法应用于多个老年患者的潜水员
在大型学术初级保健网络中,PLE慢性病。建立在我们团队的轨道上 -
成功的临床试验,我们将进行姑息治疗的随机对照试验
带有初级保健的门控,以最高预测的死亡风险为目标。我们会 -
对一系列可测量的患者报告结果和医疗保健利用的影响。
研究设计我们将开发一个模型,以预测初级保健患者的一年死亡率
65,使用来自电子健康记录的丰富变量。我们的初步数据表明
机器学习模型非常准确地预测样本外死亡率,即患者
该模型从未见过。我们将确定死亡风险最高的患者 - 谁会受益
大多数来自稀缺的姑息治疗资源,并与他们一起参加随机试验,
将通常的初级保健与姑息治疗融合的初级保健进行比较。干预,
姑息治疗临床医生的一系列家庭访问将与
病人和初级保健团队。该策略专门旨在满足较旧的PA-的需求
Timent以及繁忙的初级保健临床医生。我们将为研究提供动力,以检测两个的变化
主要结果:通过医院和紧急就诊来衡量的生活质量和护理强度。
其他结果包括症状伯恩,高级护理计划,临终关怀和死亡率。
该项目的含义将在姑息治疗的新模型上产生第一个证据
患有多种慢性疾病的老年人在疾病轨迹中输送了“上游”。我们将
建立针对老年人姑息治疗干预措施所需的技术和临床基础设施
在基于特定疾病的计划之外的成年人。成功的审判将促进更广泛的采用 -
老年人相似的干预措施,并从根本上改变了规模和范围
在这一人群中的姑息治疗工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziad Obermeyer其他文献
Ziad Obermeyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ziad Obermeyer', 18)}}的其他基金
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
8550845 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
9136683 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
8918327 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
8416137 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
- 批准号:
10729272 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Implementing Advance Care Planning as a Healthy Aging Activity in Rural Primary Care
在农村初级保健中实施预先护理计划作为健康老龄化活动
- 批准号:
10557515 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
I CAN DO Surgical ACP (Improving Completion, Accuracy, and Dissemination Of Surgical Advanced Care Planning) Trial
I CAN DO Surgical ACP(提高外科高级护理计划的完成度、准确性和传播)试验
- 批准号:
10649843 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
ED-LEAD: Emergency Departments LEading the transformation of Alzheimer's and Dementia care
ED-LEAD:急诊科引领阿尔茨海默病和痴呆症护理的变革
- 批准号:
10709334 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Palliative Care as a Parkinson's Disease Standard of Care
姑息治疗作为帕金森病的护理标准
- 批准号:
10753418 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别: