Integrated Model of Palliative and Primary Care in Seriously Ill Older Adults
重病老年人的姑息治疗和初级保健综合模式
基本信息
- 批准号:9565691
- 负责人:
- 金额:$ 38.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdoptionAdvance Care PlanningArea Under CurveAwarenessBostonCaringCessation of lifeChronicChronic DiseaseClinicClinic VisitsClinical TrialsComplexComprehensive Health CareDataData AnalyticsDiagnosisDiseaseElderlyElectronic Health RecordEmergency Department patientEmergency SituationEnrollmentEventFaceGeriatricsHome environmentHospitalizationHospitalsInterventionLength of StayMachine LearningMalignant NeoplasmsMeasurableMeasuresMedicalMethodsModelingOlder PopulationOutcomePalliative CarePatient CarePatient Outcomes AssessmentsPatient riskPatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPopulationPopulation HeterogeneityPredictive ValuePrimary Health CareProceduresQuality of lifeRandomized Controlled TrialsRecordsReportingResearch DesignResourcesRiskRoleSF-12SamplingSeriesSpecialistStatistical ModelsSymptomsTechniquesTestingTextThinnessTimeValidationVisitWorkbaseclinical infrastructurecostdesignend of lifeend of life careevidence basefallshealth care service utilizationhigh riskhospice environmentimprovedimproved outcomeinterestintervention effectmortalitymultiple chronic conditionsnovelolder patientoncologyoutcome forecastpalliativepatient populationpatient subsetspredictive modelingprimary care settingprimary outcomeprognosticprogramsrandomized trialtrial comparing
项目摘要
Project Summary
Background Palliative care is known to improve patient outcomes and reduce health care utiliza-
tion in patients with cancer. But we know little on how to deliver palliative care to the large and
growing population of older patients with multiple chronic conditions. Palliative care clinicians are a
scarce resource, so care must be targeted to the subset of patients who would benefit most: those
at highest risk of near-term death. This is a major challenge outside of specific diseases with
known trajectories. Clinicians struggle with prognosis, and current statistical models perform poorly.
Aims We will use novel predictive modeling methods (`machine learning') to identify complex old-
er patients at high risk of one-year mortality, drawing on our team's prior work in data analytics and
machine learning. We will apply these methods to a diverse population of older patients with multi-
ple chronic conditions, in a large academic primary care network. Building on our team's track rec-
ord of successful clinical trials, we will conduct a randomized controlled trial of palliative care inte-
grated with primary care, targeting older patients at the highest predicted risk of death. We will as-
sess impact on a range of measurable patient-reported outcomes and health care utilization.
Study design We will develop a model to predict one-year mortality in primary care patients over
65, using a rich set of variables from electronic health records. Our preliminary data indicate that
machine learning models are highly accurate for predicting mortality out-of-sample, i.e., in patients
the model has never seen. We will identify patients at the highest risk of death—who would benefit
most from scarce palliative care resources—and approach them to participate in a randomized trial,
comparing usual primary care to primary care integrated with palliative care. The intervention, a
series of home-based visits by palliative care clinicians, will build a longitudinal relationship with the
patient and primary care team. This strategy is designed specifically to meet the needs of older pa-
tients, as well as busy primary care clinicians. We will power the study to detect changes in two
primary outcomes: quality of life and care intensity, measured by hospital and emergency visits.
Other outcomes include symptom burden, advanced care planning, hospice use, and mortality.
Implications This project will generate the first evidence on a new model of palliative care for
older adults with multiple chronic illnesses, delivered `upstream' in the disease trajectory. We will
build the technical and clinical infrastructure needed to target palliative care interventions for older
adults outside of specific disease-based programs. A successful trial would facilitate broader adop-
tion of similar interventions for older adults, and fundamentally transform the scale and scope of
palliative care efforts in this population.
项目概要
众所周知,背景姑息治疗可以改善患者的治疗效果并减少医疗保健的利用率
但我们对如何向广大癌症患者提供姑息治疗知之甚少。
患有多种慢性病的老年患者数量不断增加。
资源稀缺,因此护理必须针对最受益的患者子集:
近期死亡的风险最高,这是除特定疾病之外的一项重大挑战。
临床医生在预后方面遇到了困难,而当前的统计模型表现不佳。
目标我们将使用新颖的预测建模方法(“机器学习”)来识别复杂的旧模型
呃患者一年内死亡风险很高,利用我们团队之前在数据分析和
我们将把这些方法应用于患有多种疾病的不同老年患者群体。
在我们团队的跟踪记录的基础上,我们建立了一个大型学术初级保健网络。
在一系列成功的临床试验之后,我们将进行一项关于姑息治疗的随机对照试验
我们将针对预测死亡风险最高的老年患者进行初级护理评估。
评估对一系列可衡量的患者报告结果和医疗保健利用的影响。
研究设计 我们将开发一个模型来预测初级保健患者的一年死亡率
65,使用来自电子健康记录的丰富变量,我们的初步数据表明。
机器学习模型对于预测样本外死亡率(即患者死亡率)非常准确
我们将识别出死亡风险最高的患者——谁将从中受益。
大部分来自稀缺的姑息治疗资源,并让他们参与随机试验,
将常规初级保健与结合姑息治疗的初级保健进行比较。
姑息治疗参议员的一系列家访,将与姑息治疗建立纵向关系
该策略是专门为满足老年人的需求而设计的。
我们将推动这项研究来检测两个方面的变化。
主要结果:通过医院和急诊就诊衡量的生活质量和护理强度。
其他结果包括症状负担、高级护理计划、临终关怀服务的使用和死亡率。
影响 该项目将为姑息治疗新模式提供第一个证据
患有多种慢性疾病的老年人,将在疾病轨迹中“逆流而上”。
建立针对老年人的姑息治疗干预所需的技术和临床基础设施
成功的试验将促进更广泛的采用。
对老年人采取类似的干预措施,并从根本上改变干预措施的规模和范围
该人群的姑息治疗工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziad Obermeyer其他文献
Ziad Obermeyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ziad Obermeyer', 18)}}的其他基金
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
8550845 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
9136683 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
8918327 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
8416137 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
- 批准号:
10729272 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Implementing Advance Care Planning as a Healthy Aging Activity in Rural Primary Care
在农村初级保健中实施预先护理计划作为健康老龄化活动
- 批准号:
10557515 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
I CAN DO Surgical ACP (Improving Completion, Accuracy, and Dissemination Of Surgical Advanced Care Planning) Trial
I CAN DO Surgical ACP(提高外科高级护理计划的完成度、准确性和传播)试验
- 批准号:
10649843 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
ED-LEAD: Emergency Departments LEading the transformation of Alzheimer's and Dementia care
ED-LEAD:急诊科引领阿尔茨海默病和痴呆症护理的变革
- 批准号:
10709334 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Palliative Care as a Parkinson's Disease Standard of Care
姑息治疗作为帕金森病的护理标准
- 批准号:
10753418 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别: