Tendon Tissue Engineering by Electrochemically Aligned Collagen Bioscaffolds
通过电化学排列胶原生物支架进行肌腱组织工程
基本信息
- 批准号:9247755
- 负责人:
- 金额:$ 53.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-08 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AllograftingAnimal ModelArticular Range of MotionAutologousAutologous TransplantationBiocompatible MaterialsBiologyBiomechanicsBiometryCellsCicatrixCollagenCollagen Type ICuesDefectEarly MobilizationsEngineeringFaceFailureForeign-Body ReactionFrequenciesGelGoldGrowth FactorHistopathologyImmune responseIn VitroInflammatory ResponseInterdisciplinary StudyJointsMarrowMechanical StimulationMechanicsMesenchymal DifferentiationMesenchymal Stem CellsMethodsModelingMolecularMorbidity - disease rateMorphologyOperative Surgical ProceduresOryctolagus cuniculusOutcomeOutcome MeasureOutputPatientsPeriodicityPhysiologicalPolymersProceduresProcessProductionQuality of lifeRoleSideSiteSolidStem cellsSystemTendon InjuriesTendon structureTestingTextilesTextureThe SunTissue EngineeringTissuesTreatment CostValidationXenograft procedureadult stem cellbasebiomaterial compatibilityconditioningcostcrosslinkdensityhealingimprovedimproved outcomein vivoinfraspinatous muscleinjuredmechanical propertiesnovelpre-clinicalpublic health relevancereconstructionregenerativerepairedresponsescaffoldstandard caretreatment group
项目摘要
DESCRIPTION (provided by applicant): Repair of massive tendon defects occur in tens of thousands annually in the U.S. alone to restore the range of motion of involved joints. Autografts are the primary choice; however, donor site morbidity and limits in supply are significant issues. Allografts/xenografts may elicit immune response. Foreign body reaction to synthetic polymers is a significant drawback. Regenerative solutions expediting tendon repair, enabling earlier mobilization and reducing failure rates would be highly significant by reducing treatment costs. Tendon reconstruction faces multiple challenges due to the absence of a bioscaffold which unifies mechanical robustness, tenoinductivity and a form that enables integration to the repair site surgically. Supported in part by a R21 project, we developed a novel method to fabricate electrochemically aligned collagen (ELAC) threads whose fabric orientation, packing density and mechanical properties match those of the native tendon. ELAC induces tenogenic differentiation of mesenchymal stem cell (MSC) topographically and MSCs in woven scaffolds synthesize a matrix that is positive of collagen I and the tendon-specific tenomodulin molecule. ELAC is biocompatible in vivo and resolves into a tendon-like fibrous tissue. The degradation rate of ELAC matches the slow repair-rate of tendon. Therefore, ELAC is a unique bioactive and mechanically competent platform with the potential to repair tendon without the addition of growth factors. The proposed studies will test the hypothesis that the biomechanics of the tendon gap defects repaired by ELAC-based regenerative strategies will match or exceed that is attained by autografts. The first aim will optimize ELAC topography and in vitro conditioning processes to maximize tenogenesis of MSCs in woven ELAC scaffolds. Specifically, Sub-Aim 1.1 will study the roles of substrate compaction, alignment and stiffness in eliciting the observed
tenogenic response. Marrow- derived MSCs will be seeded on textures of random vs. aligned, electrocompacted vs. gel form, and matrix stiffness values modulated over six orders of magnitude (1 kPa to 1000 MPa), a range coverage that is unique to ELAC. Sub Aim 1.2 studies will optimize cell seeding density and invoke mechanostimulation to assess effects of strain amplitude and strain rate towards further enhancement of tenogenesis in vitro. The second aim will improve the repair outcome on critical sized tendon defects by using woven ELAC scaffolds. A rabbit infraspinatus tendon defect model will be employed. The treatment groups will include autograft repair, ELAC scaffolds (with and without cells) and gap-defect as the negative control. Outcome measures will include repair biomechanics, types of de novo matrix molecules, inflammatory response and healing morphology. Elucidation of material-based and in vitro conditioning based cues in tenogenesis and in depth validation of its merits using the rabbit model will pave the way for a preclinical assessment of this novel biomaterial in large animal models. If ELAC performs at least as good as autografts the costs and morbidity associated with autografts will be eliminated. ELAC will benefit patients by restoring joint range of motion and by
eliminating revision surgeries.
描述(由申请人提供):仅在美国每年就有数以万计的大规模肌腱缺损修复手术,以恢复相关关节的运动范围。自体移植是首选;然而,供体部位的发病率和供应限制是重大问题。同种异体移植物/异种移植物可能引发免疫反应。对合成聚合物的异物反应是一个显着的缺点。再生解决方案可以通过降低治疗成本来加速肌腱修复、实现早期活动并降低失败率,从而具有非常重要的意义。由于缺乏将机械鲁棒性、肌腱感应性和能够通过手术整合到修复部位的形式相结合的生物支架,肌腱重建面临着多重挑战。在 R21 项目的部分支持下,我们开发了一种新颖的方法来制造电化学排列胶原蛋白 (ELAC) 线,其织物方向、堆积密度和机械性能与天然肌腱相匹配。 ELAC 在形态上诱导间充质干细胞 (MSC) 的肌腱分化,并且编织支架中的 MSC 合成 I 型胶原蛋白和肌腱特异性肌腱调节蛋白分子呈阳性的基质。 ELAC 在体内具有生物相容性,可分解成肌腱样纤维组织。 ELAC的降解速度与肌腱的缓慢修复速度相匹配。因此,ELAC 是一种独特的生物活性和机械能力平台,具有在不添加生长因子的情况下修复肌腱的潜力。拟议的研究将检验以下假设:基于 ELAC 的再生策略修复肌腱间隙缺陷的生物力学将与自体移植物所达到的效果相匹配或超过。第一个目标是优化 ELAC 形貌和体外调节过程,以最大限度地提高编织 ELAC 支架中 MSC 的肌腱形成。具体来说,子目标 1.1 将研究基材压实、对齐和刚度在引发观察到的结果中的作用
肌腱反应。骨髓来源的 MSC 将接种在随机与排列、电致密与凝胶形式的纹理上,并且基质刚度值调制超过六个数量级(1 kPa 至 1000 MPa),这是 ELAC 独有的范围覆盖范围。子目标 1.2 研究将优化细胞接种密度并调用机械刺激来评估应变幅度和应变速率对进一步增强体外肌腱形成的影响。第二个目标是通过使用编织 ELAC 支架来改善临界尺寸肌腱缺损的修复结果。将采用兔冈下肌腱缺损模型。治疗组将包括自体移植修复、ELAC 支架(有和没有细胞)和间隙缺陷作为阴性对照。结果测量将包括修复生物力学、从头基质分子的类型、炎症反应和愈合形态。阐明肌腱发生中基于材料和基于体外条件的线索,并使用兔子模型深入验证其优点,将为在大型动物模型中对这种新型生物材料进行临床前评估铺平道路。如果 ELAC 的性能至少与自体移植一样好,则与自体移植相关的成本和发病率将被消除。 ELAC 将通过恢复关节活动范围和
消除修复手术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ozan Akkus其他文献
Ozan Akkus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ozan Akkus', 18)}}的其他基金
Cartilage Repair by Condensed Mesenchymal Stem Cell Delivery via Collagen Fabric
通过胶原蛋白织物输送浓缩间充质干细胞来修复软骨
- 批准号:
9441710 - 财政年份:2017
- 资助金额:
$ 53.5万 - 项目类别:
Tendon Tissue Engineering by Electrochemically Aligned Collagen Bioscaffolds
通过电化学排列胶原生物支架进行肌腱组织工程
- 批准号:
9089701 - 财政年份:2015
- 资助金额:
$ 53.5万 - 项目类别:
Tendon Tissue Engineering by Electrochemically Aligned Collagen Bioscaffolds
通过电化学排列胶原生物支架进行肌腱组织工程
- 批准号:
8835033 - 财政年份:2014
- 资助金额:
$ 53.5万 - 项目类别:
Tendon Tissue Engineering by Electrochemically Aligned Collagen Bioscaffolds
通过电化学排列胶原生物支架进行肌腱组织工程
- 批准号:
8697319 - 财政年份:2014
- 资助金额:
$ 53.5万 - 项目类别:
Diagnosis of Crystal-Based Arthropathies via Raman Spectroscopy
通过拉曼光谱诊断晶体关节病
- 批准号:
8322612 - 财政年份:2011
- 资助金额:
$ 53.5万 - 项目类别:
Diagnosis of Crystal-Based Arthropathies via Raman Spectroscopy
通过拉曼光谱诊断晶体关节病
- 批准号:
8187630 - 财政年份:2011
- 资助金额:
$ 53.5万 - 项目类别:
Diagnosis of Crystal-Based Arthropathies via Raman Spectroscopy
通过拉曼光谱诊断晶体关节病
- 批准号:
8528336 - 财政年份:2011
- 资助金额:
$ 53.5万 - 项目类别:
Electrochemically Guided Collagen Synthesis for Functional Tissue Engineering
用于功能组织工程的电化学引导胶原蛋白合成
- 批准号:
7691366 - 财政年份:2008
- 资助金额:
$ 53.5万 - 项目类别:
Electrochemically Guided Collagen Synthesis for Functional Tissue Engineering
用于功能组织工程的电化学引导胶原蛋白合成
- 批准号:
7587640 - 财政年份:2008
- 资助金额:
$ 53.5万 - 项目类别:
Diagnosis of Crystalopathies via Raman Spectroscopy
通过拉曼光谱诊断晶体病
- 批准号:
7276958 - 财政年份:2005
- 资助金额:
$ 53.5万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
OsTend: A load-bearing, bi-phasic collagen scaffold for massive rotator cuff repairs
OsTend:一种用于大规模肩袖修复的承重双相胶原支架
- 批准号:
10761321 - 财政年份:2023
- 资助金额:
$ 53.5万 - 项目类别:
Ultrasound Stimulated Chondrogenic Stem Cell Therapy for Osteoarthritis
超声刺激软骨干细胞治疗骨关节炎
- 批准号:
10701506 - 财政年份:2023
- 资助金额:
$ 53.5万 - 项目类别:
Pre-Clinical Assessment of a Minimally Invasive Meniscus Implant to Delay Arthritis
微创半月板植入物延迟关节炎的临床前评估
- 批准号:
10759312 - 财政年份:2023
- 资助金额:
$ 53.5万 - 项目类别:
Evaluation of extracellular matrix gel for adhesion prevention and tissue healing intendon surgery
细胞外基质凝胶预防粘连和组织愈合意向手术的评价
- 批准号:
10482261 - 财政年份:2022
- 资助金额:
$ 53.5万 - 项目类别: