Pathogenic Role of DNA-Damage Response Pathway in the Diabetic Retina
DNA 损伤反应途径在糖尿病视网膜中的致病作用
基本信息
- 批准号:9542820
- 负责人:
- 金额:$ 34.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAffectAnimal ModelAnimalsAntioxidantsApoptosisApoptoticAwarenessBiochemical PathwayBiogenesisBlood VesselsBrainCell DeathCellsChronicClinical TrialsComplications of Diabetes MellitusConsensusDNA DamageDataDevelopmentDiabetes MellitusDiabetic RetinopathyDiseaseDown-RegulationEnergy MetabolismExclusionExposure toGenetic TranscriptionGoalsHomeostasisHumanHyperglycemiaIndividualInflammationInflammatoryInsulin-Dependent Diabetes MellitusInvestigationKnowledgeLinkMachado-Joseph DiseaseMediatingMetabolicMetabolic PathwayMitochondriaModificationMolecularNerve DegenerationNeuronsNuclearOxidation-ReductionOxidative PhosphorylationOxidative StressPathogenicityPathway interactionsPatientsPhosphotransferasesPhotoreceptorsPlayProductionRegulationResearchRetinaRetinalRetinal DiseasesRoleSignal PathwaySignal TransductionSiteStimulusTestingTranscription CoactivatorVirulence FactorsWorkataxia telangiectasia mutated proteinbasecytokinediabeticds-DNAexperimental studygenome integrityinsightmitochondrial dysfunctionnoveloxidative DNA damagerepairedresponsesensortissue culturevirtual
项目摘要
Diabetic retinopathy has been associated with oxidative stress, mitochondrial dysfunction, and chronic
activation of inflammatory and degenerative pathways. Substantial evidence implicates the retinal
mitochondrial ‒ oxidative stress axis as a major unifying pathogenic factor for virtually all diabetes-induced
cellular changes implicated in the development of retinal complications. Therapies directed against these
individual pathways have provided disappointing results in human clinical trials. Likewise, clinical trials utilizing
antioxidants have produced equally ambiguous results. Taken together, these trials suggest a significant
knowledge gap regarding underlying mechanism(s) linking oxidative stress to activation of pro-inflammatory
and pro-degenerative pathways in diabetic retinas. Based on our previous work in Spinocerebellar ataxia type
3 patients, together with new data provided in this revised application using relevant retinal cells, we propose
the novel hypothesis that ROS-mediated DNA damage in diabetes chronically activates the DNA damage
response (DDR) ATM (ataxia-telangiectasia mutated) pathway. There is a strong link between increased DNA
damage accumulation and development of diabetic complications including retinopathy. Also, there is a
growing consensus that ATM not only acts as a DNA damage sensor to coordinate repair of damaged sites to
maintain genome integrity but also plays a critical role in modulating the activities of cellular metabolic sensors
to interfere with mitochondrial function, cellular energy homeostasis, inflammation, and apoptosis. How the
DDR-ATM pathway interconnects various signaling components to disrupt cellular energy metabolism and
enhance pro-degenerative signaling is the subject of intense investigation but remains unexplored in the retina.
Our recent studies have shown that chronic activation of the DDR pathway interferes with mitochondrial
function by suppressing PGC-1α activity, a key transcription co-activator that regulates mitochondrial
biogenesis, oxidative phosphorylation, and cellular energy homeostasis. Our new preliminary data
demonstrating increased DNA damage and ATM activation in diabetic retina supports our hypothesis. The
experiments proposed in this application will test the central hypothesis that diabetes-induced oxidative
stress causes double stranded DNA damage resulting in ATM activation, leading to downregulation of PGC1α
that impacts multiple pathogenic pathways observed in diabetic retinas. We hypothesize that ATM activation
induces a significant amplification of diabetes-induced oxidative stress via mitochondrial disruption by multiple
mechanisms (aim 1), vascular and neuronal degeneration (aim 2), and chronic inflammation (aim 3). These
aims have the potential to establish a unifying molecular mechanism that links enhanced DNA damage to
chronic oxidative, degenerative, and inflammatory abnormalities observed in diabetes. The greatest impact of
our work is to provide a regulatory mechanism offering a novel explanation for how hyperglycemia impacts
mitochondrial dysfunction to amplify oxidative, inflammatory and degenerative changes in the retina.
PHS 398/2590 (Rev. 06/09) Page Continuation Format Page
糖尿病视网膜病变与氧化应激、线粒体功能障碍和慢性
大量证据表明,炎症和退行性通路的激活与视网膜有关。
线粒体-氧化应激轴是几乎所有糖尿病诱发的主要统一致病因素
针对这些疾病的治疗涉及细胞变化。
类似地,个别途径在人体临床试验中提供了令人失望的结果。
总而言之,这些试验得出了同样不明确的结果。
关于氧化应激与促炎症激活之间的潜在机制的知识差距
基于我们之前对脊髓小脑性共济失调类型的研究。
3 名患者,连同本修订后的申请中使用相关视网膜细胞提供的新数据,我们建议
糖尿病中 ROS 介导的 DNA 损伤会长期激活 DNA 损伤的新假设
DNA 增加之间存在密切联系。
此外,还有视网膜病变等糖尿病并发症的损伤累积和发展。
越来越多的共识认为,ATM 不仅充当 DNA 损伤传感器来协调受损位点的修复,
维持基因组完整性,而且在调节细胞代谢传感器的活动中也发挥着关键作用
干扰线粒体功能、细胞能量稳态、炎症和细胞凋亡。
DDR-ATM 通路将各种信号成分互连起来,破坏细胞能量代谢并
增强促退行性信号传导是深入研究的主题,但在视网膜中仍未得到探索。
我们最近的研究表明,DDR 通路的慢性激活会干扰线粒体
通过抑制 PGC-1α 活性发挥功能,PGC-1α 是调节线粒体的关键转录辅激活因子
我们的新初步数据。
糖尿病视网膜中 DNA 损伤和 ATM 激活增加支持了我们的假设。
本申请中提出的实验将检验糖尿病诱导的氧化作用的中心假设
压力导致双链 DNA 损伤,导致 ATM 激活,导致 PGC1α 下调
我们捕获了 ATM 激活,从而影响了糖尿病视网膜中观察到的多种致病途径。
通过多种途径破坏线粒体,显着放大糖尿病引起的氧化应激
机制(目标 1)、血管和神经元变性(目标 2)和慢性炎症(目标 3)。
目标有可能建立一个统一的分子机制,将增强的 DNA 损伤与
糖尿病中观察到的慢性氧化、退行性和炎症异常影响最大。
我们的工作是提供一种调节机制,为高血糖如何影响提供新的解释
线粒体功能障碍会加剧视网膜的氧化、炎症和退行性变化。
PHS 398/2590(修订版 06/09) 页面延续 格式页面
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PARTHA S SARKAR其他文献
PARTHA S SARKAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PARTHA S SARKAR', 18)}}的其他基金
Regulation of HTT-mediated DNA damage repair and chromatin remodeling Complexes
HTT 介导的 DNA 损伤修复和染色质重塑复合物的调节
- 批准号:
10800972 - 财政年份:2023
- 资助金额:
$ 34.88万 - 项目类别:
Pathogenic Role of DNA-Damage Response Pathway in the Diabetic Retina
DNA 损伤反应途径在糖尿病视网膜中的致病作用
- 批准号:
9176558 - 财政年份:2016
- 资助金额:
$ 34.88万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 34.88万 - 项目类别:
Sex differences in stress inoculation of addiction-like phenotypes
成瘾样表型应激接种的性别差异
- 批准号:
10757580 - 财政年份:2023
- 资助金额:
$ 34.88万 - 项目类别:
Role of Mettl3-dependent RNA m6A dysregulation in Alzheimer's disease
Mettl3 依赖性 RNA m6A 失调在阿尔茨海默病中的作用
- 批准号:
10739065 - 财政年份:2023
- 资助金额:
$ 34.88万 - 项目类别:
Chromatin and metabolic regulation of plasticity in a predatory nematode
捕食性线虫可塑性的染色质和代谢调节
- 批准号:
10715689 - 财政年份:2023
- 资助金额:
$ 34.88万 - 项目类别:
Characterize neuronal and glial cell-specific vulnerability to proteinopathies in Alzheimer's disease using multimodal single-nuclei genomic and epigenomic approaches
使用多模式单核基因组和表观基因组方法表征阿尔茨海默病中神经元和神经胶质细胞对蛋白质病的特异性脆弱性
- 批准号:
10666954 - 财政年份:2023
- 资助金额:
$ 34.88万 - 项目类别: