Endothelial Healing is Inhibited by PI3 Kinase-Induced Activation of TRPC6
PI3 激酶诱导的 TRPC6 激活抑制内皮愈合
基本信息
- 批准号:9240762
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:1-Phosphatidylinositol 3-KinaseAdaptor Signaling ProteinAgingAmericanAngioplastyAnimalsAntineoplastic AgentsAreaArterial InjuryArteriesAwardBalloon AngioplastyBindingBiological AssayBiologyBiometryBlood VesselsCalcium ionCalpainCardiovascular DiseasesCardiovascular systemCarotid ArteriesCatalytic DomainCell ProliferationCell membraneCellsCenters for Disease Control and Prevention (U.S.)CholesterolCicatrixClinical TrialsCoagulation ProcessComplementCritical ThinkingCytoskeletal ProteinsDiagnosisDietDiseaseEffectivenessElderlyEndothelial CellsFoundationsFunctional disorderFundingGenerationsGoalsGrantHeart DiseasesHigh Fat DietIn VitroInflammatoryInjuryInterventionKnowledgeLaboratoriesLeadershipLengthLipidsLysophosphatidylcholinesMembraneMentorsMethodsModelingMolecular and Cellular BiologyMusOperative Surgical ProceduresOutcomePatientsPhosphatidylinositolsPlayPopulationProceduresProtein IsoformsProteinsPulmonary HypertensionQuality of lifeRNAReactive Oxygen SpeciesResearchResearch PersonnelRoleSiteSite-Directed MutagenesisSmall Interfering RNASmooth Muscle MyocytesStentsSurfaceSystemic hypertensionTNFRSF5 geneTechniquesTestingTherapeuticThrombosisTransfectionTreatment ProtocolsUnited StatesUnited States National Institutes of HealthVascular DiseasesVascular GraftVeteransWild Type MouseWritingatherogenesisbasecareercareer developmentcell motilityclinical practiceexperiencehealinghigh rewardhypercholesterolemiaimprovedimproved outcomein vivoinhibitor/antagonistinjuredkinase inhibitormacrophagenoveloverexpressionoxidationoxidized lipidoxidized low density lipoproteinpreventreceptorrestenosisskillssuccesstherapy outcomevoltage gated channel
项目摘要
Cardiovascular disease is a devastating disorder that has a major impact on length and quality of life.
According to the CDC, approximately 27 million Americans carry the diagnosis of heart disease. The number of
heart and vascular procedures (balloon angioplasties and vascular grafts) that will be performed in 2030 is ex-
pected to be nearly twice the number performed in 2010. Similar increases will occur in the veteran population
When a blood vessel is treated with angioplasty, the endothelial cells (EC) are removed. The cells must
migrate from the edge of the injury into the area of injury to heal it. If healing is delayed, the chance of
restenosis is increased. Lipid oxidation products accumulate in atherosclerotic arteries and at regions of injury,
cause cellular dysfunction, and inhibit EC migration in vitro and in vivo. Limited re-endothelialization contributes
to thrombogenicity, smooth muscle cell proliferation, and restenosis.
Oxidized lipids cause an inappropriate increase in intracellular free calcium ion concentration ([Ca2+]i)
through canonical transient receptor potential (TRPC) channels, specifically TRPC6. Activation of TRPC6 by
causes an increase in [Ca2+]i that results in activation of TRPC5 and a prolonged increase in [Ca2+]i. The
increased [Ca2+]i activates calpains that break down cytoskeletal proteins inhibiting EC migration. Studies in
TRPC6-/- mice provide compelling evidence of the importance of this cascade in vivo. Re-endothelialization of
injured carotid arteries is dramatically reduced in wild-type (WT) mice on a high fat diet compared with chow-
fed mice, but in TRPC6-/- mice, hypercholesterolemia does not inhibit re-endothelialization of the injury.
Considerable effort has been directed at identifying a TRPC6 inhibitor without success. Lipid oxidation
products induce TRPC6 externalization by activating phosphatidylinositol 3-kinase (PI3K), which generates
PIP3 (phosphatidylinositol (3,4,5)-trisphosphate). PIP3 is anchored in the cell membrane and binds to TRPC6,
which promotes TRPC6 translocation to the cell membrane and leads to increased [Ca2+]i. We hypothesize that
inhibition of PI3K can block the activation of TRPC6 channels by lipid oxidation products and restore EC migra-
tion in vitro and promote EC healing of arterial injuries in vivo. To test this, we will 1) identify the PI3K iso-
form(s) essential for TRPC6 activation, 2) investigate the effectiveness of isoform-specific PI3K inhibitors to re-
store EC healing of arterial injuries in hypercholesterolemic animals, and 3) investigate the mechanism through
which PIP3 interacts with TRPC6 to promote TRPC6 translocation to the membrane and activation to identify a
more specific method of TRPC6 inhibition. The long-term scientific goal is to improve the outcome of ther-
apeutic vascular interventions promoting endothelial surfacing of angioplasty sites, stents, and vascular grafts.
In terms of a research career development, my short-term research goal is to develop a foundation in a
focused research area that I can expand over the course of my career and which will serve as a complement to
my clinical practice. My knowledge of vascular wall biology will increase through seminars and I will expand my
experience in cellular molecular biology laboratory techniques over the course of the award, including protein
extraction and analysis, small-inhibitory RNA transfection, and site directed mutagenesis. Over the course of
the award, I will gain additional experience in biostatistics, scientific and grant writing, laboratory management
and leadership, and mentoring. I will also continue to develop the critical thinking skills necessary for
successful research plans.
My primary long-term career goal is to transition to an independent investigator and compete for VA Merit
Review and NIH funding. My long-term research goal is to more clearly define the mechanisms by which
reactive oxygen species and the activation of TRPC channels inhibit endothelial cell healing. With progress in
this area, mechanism-based treatment regimens can be developed, transitioned into clinical trials, and
ultimately be carried into clinical practice to improve the long-term outcomes following vascular intervention.
心血管疾病是一种毁灭性的疾病,对生命的长度和质量有重大影响。
根据疾病预防控制中心 (CDC) 的数据,大约 2700 万美国人患有心脏病。数量
预计 2030 年将进行心脏和血管手术(球囊血管成形术和血管移植术)
预计将是 2010 年执行人数的近两倍。退伍军人人数也会出现类似的增长
当用血管成形术治疗血管时,内皮细胞(EC)被去除。细胞必须
从伤口边缘迁移到受伤区域以使其愈合。如果延迟愈合,则有机会
再狭窄增加。脂质氧化产物积聚在动脉粥样硬化动脉和损伤区域,
引起细胞功能障碍,并抑制 EC 在体外和体内的迁移。有限的再内皮化贡献
血栓形成、平滑肌细胞增殖和再狭窄。
氧化脂质导致细胞内游离钙离子浓度 ([Ca2+]i) 不适当地增加
通过经典瞬时受体电位 (TRPC) 通道,特别是 TRPC6。 TRPC6 的激活
导致 [Ca2+]i 增加,从而激活 TRPC5 并延长 [Ca2+]i 增加。这
[Ca2+]i 增加会激活钙蛋白酶,分解细胞骨架蛋白,抑制 EC 迁移。研究于
TRPC6-/- 小鼠提供了令人信服的证据,证明了体内级联的重要性。再内皮化
与饮食相比,高脂肪饮食的野生型(WT)小鼠颈动脉损伤显着减少。
喂养小鼠,但在 TRPC6-/- 小鼠中,高胆固醇血症不会抑制损伤的再内皮化。
为了鉴定 TRPC6 抑制剂,人们付出了相当多的努力,但没有成功。脂质氧化
产品通过激活磷脂酰肌醇 3-激酶 (PI3K) 诱导 TRPC6 外化,产生
PIP3(磷脂酰肌醇(3,4,5)-三磷酸)。 PIP3 锚定在细胞膜上并与 TRPC6 结合,
它促进 TRPC6 易位到细胞膜并导致 [Ca2+]i 增加。我们假设
抑制 PI3K 可以阻断脂质氧化产物对 TRPC6 通道的激活并恢复 EC 迁移
体外并促进体内动脉损伤的 EC 愈合。为了测试这一点,我们将 1) 识别 PI3K iso-
TRPC6 激活所必需的形式,2) 研究异构体特异性 PI3K 抑制剂重新激活的有效性
储存 EC 对高胆固醇血症动物动脉损伤的愈合作用,以及 3) 通过以下方式研究其机制:
其中 PIP3 与 TRPC6 相互作用,促进 TRPC6 易位至膜并激活,从而识别
TRPC6抑制的更具体方法。长期科学目标是提高治疗结果
促进血管成形术部位、支架和血管移植物的内皮表面形成的血管介入治疗。
在研究职业发展方面,我的短期研究目标是为未来的研究奠定基础。
我可以在职业生涯中扩展的重点研究领域,并将作为对
我的临床实践。我对血管壁生物学的了解将通过研讨会增加,并且我将扩展我的知识
获奖期间细胞分子生物学实验室技术的经验,包括蛋白质
提取和分析、小抑制性 RNA 转染和定点诱变。整个过程中
通过该奖项,我将获得生物统计学、科学和资助写作、实验室管理方面的额外经验
以及领导力和指导。我还将继续培养必要的批判性思维技能
成功的研究计划。
我的主要长期职业目标是转型为独立调查员并争夺 VA 优异奖
审查和 NIH 资助。我的长期研究目标是更清晰地定义其机制
活性氧和 TRPC 通道的激活抑制内皮细胞愈合。随着进展
在这一领域,可以开发基于机制的治疗方案,并将其转化为临床试验,并且
最终进入临床实践,以改善血管介入治疗后的长期结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Aaric Rosenbaum其他文献
Michael Aaric Rosenbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Aaric Rosenbaum', 18)}}的其他基金
Endothelial Healing is Inhibited by Activation of TRPC6 Channels
TRPC6 通道的激活会抑制内皮愈合
- 批准号:
10369226 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Endothelial Healing is Inhibited by Activation of TRPC6 Channels
TRPC6 通道的激活会抑制内皮愈合
- 批准号:
10526285 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Endothelial Healing is Inhibited by PI3 Kinase-Induced Activation of TRPC6
PI3 激酶诱导的 TRPC6 激活抑制内皮愈合
- 批准号:
10265334 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Effect of Oxidized Lipids on Endothelial Migration and Vascular Graft Healing
氧化脂质对内皮迁移和血管移植物愈合的影响
- 批准号:
7328918 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Effect of Oxidized Lipids on Endothelial Migration and Vascular Graft Healing
氧化脂质对内皮迁移和血管移植物愈合的影响
- 批准号:
7500876 - 财政年份:2007
- 资助金额:
-- - 项目类别:
相似国自然基金
ARRB调控Wnt/β-catenin信号通路诱导血管内皮细胞necroptosis在非小细胞肺癌外渗与转移中的作用及机制研究
- 批准号:81902350
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
SH3结构域蛋白Dlish调控果蝇Hippo信号通路的分子机制研究
- 批准号:31801190
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
锚定蛋白ENH调控eNOS磷酸化在血管重构中的作用及机制研究
- 批准号:31871399
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
内化接头蛋白HIP1R介导神经元树突生长和分支的作用及其机制研究
- 批准号:31871418
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
接头蛋白GAB1通过SAPKs信号通路调节血管平滑肌细胞自噬参与动脉粥样硬化的机制研究
- 批准号:81700421
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Healing is Inhibited by Activation of TRPC6 Channels
TRPC6 通道的激活会抑制内皮愈合
- 批准号:
10369226 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The Novel Mechanisms of Thrombosis Formation in Myeloproliferative Diseases
骨髓增生性疾病血栓形成的新机制
- 批准号:
10424485 - 财政年份:2020
- 资助金额:
-- - 项目类别:
The Novel Mechanisms of Thrombosis Formation in Myeloproliferative Diseases
骨髓增生性疾病血栓形成的新机制
- 批准号:
10187644 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Endothelial Healing is Inhibited by PI3 Kinase-Induced Activation of TRPC6
PI3 激酶诱导的 TRPC6 激活抑制内皮愈合
- 批准号:
10265334 - 财政年份:2017
- 资助金额:
-- - 项目类别:
TRAF6 Signaling in Skeletal Muscle Regeneration during Aging
衰老过程中骨骼肌再生中的 TRAF6 信号转导
- 批准号:
8782945 - 财政年份:2014
- 资助金额:
-- - 项目类别: