Membranous Nanogenerators for in vivo Bio-mechanical Energy Harvesting
用于体内生物机械能量收集的膜纳米发电机
基本信息
- 批准号:9418602
- 负责人:
- 金额:$ 33.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAgitationAnimal ModelAnimalsAreaArticulationBindingBiologicalBiomechanicsBlood CirculationCardiacCardiac Surgery proceduresChargeChemicalsCicatrixClinicalCorrosionDataDevelopmentDevicesDimensionsDisease modelEnergy-Generating ResourcesEngineeringEnvironmentFeedbackFutureGrowthHarvestHealthHeartHuman bodyImplantInflammationLifeLimb structureLiquid substanceMechanicsMembraneMethodsModulusMonitorMorphologyMusMuscleNanostructuresNanotechnologyOperative Surgical ProceduresOrganOutputPacemakersPerformancePhysiciansPhysiologyPolymersPoriferaPower SourcesPropertyRattusResearchResearch PersonnelResistanceRespirationRespiratory DiaphragmRunningSafetySavingsScientistSeriesStretchingSurfaceSurgeonSurgical suturesSystemTechnologyTimeTissuesUltrasonicsWeightWorkabsorptionbiocompatible polymerbiological systemsbiomaterial compatibilitychemical propertydensitydesignenergy densityexperienceflexibilityimaging studyimplantable deviceimplantationimprovedin vivoin vivo evaluationin vivo imaginginfancyinnovationinsightlight weightlimb movementmechanical propertiesmedical specialtiesnanonanomaterialsnanoscalenovelnovel strategiesoperationpolyvinylidene fluoridepressurepublic health relevancesuccess
项目摘要
DESCRIPTION: Self-powered implantable biomedical devices that provide continuous, real-time sensing, monitoring, and various other vital health functions will only be possible through the development of novel power sources that can harvest energy from the implant's surroundings, in vivo. A variety of energy sources in the human body such as limb articulation, respiration, and heartbeat can provide sufficient power for small biomedical devices. However, the development of in vivo energy harvesting devices into useful electrical power is still in infancy. In this project, we propose to explore innovative nanotechnology to develop ultrathin, lightweight, stretchable and bio-compatible piezoelectric polymer membranes with tunable modulus that can efficiently and discreetly convert the nano-/microscale mechanical energy found in human body to electrical energy, and thereby realize a self-sufficient power supply for implantable biomedical devices. This project builds on the PI (Wang)'s recent development of flexible nanogenerator (NG) - a novel approach for effectively converting mechanical energy into electric energy using polymeric piezoelectric nanomaterials. The Co-I (Cai) has >10 years of experience with in vivo imaging studies and surgical procedures in small animals. The Co-I Dr. Kohmoto specializes in all areas of clinical cardiac surgery and cardiac physiology, and will oversee and perform the advanced surgical procedures needed in the proposed work. Together they form a synergistic team with complementary expertise to design, investigate, and optimize the proposed implantable NGs both ex vivo and in vivo. In Specific Aim 1, we will fabricate flexible membranes from polyvinylidene fluoride (PVDF) with a sponge-like internal mesoporosity. The pore dimension and density will be controlled to engineer the membrane's mechanical and piezoelectric properties, and thus to maximize the mechanical energy absorption and conversion. In Specific Aim 2, we will investigate and optimize the morphology-related capability of harvesting bio-mechanical energy in simulated in vivo conditions. The encapsulation material and electric circuit will be studied to minimize the stray current from NGs.
In Specific Aim 3, we will improve the long-term stability of NG membrane on muscle/tissue surfaces via a series of strategies such as scar tissue growth, suture- and pin hole-assisted attachment. The static and dynamic adhesion stability, as well as the as well as potential inflammation and biofouling issues will be investigated and optimized. In Specific Aim 4, the morphology-related capability of harvesting bio-mechanical energy from limb movement, heartbeat, and diaphragm expansion will be studied in vivo using mice or rats. This research will overcome the yet insurmountable challenges of fabricating biocompatible piezoelectric polymer nanostructures and establish a new capability of extracting useful electrical energy from the human body while resulting in minimal impact on the organ's normal functions. The success of this project will make significant contribution to the advancement of the power components of current life-saving implantable devices by reducing the size, lowering the energy density, minimizing the protection package, and resolving safety concerns of the battery systems.
描述:只有通过开发能够从植入物周围环境中获取能量的新型电源,才能提供连续、实时传感、监测和各种其他重要健康功能的自供电植入式生物医学设备。人体的能量来源,如肢体关节、呼吸和心跳,可以为小型生物医学设备提供足够的电力。然而,在这个项目中,将体内能量收集设备开发成有用的电力仍处于起步阶段。探索创新纳米技术,开发超薄、轻质、可拉伸和生物相容性可调模量的压电聚合物膜,能够高效、谨慎地将人体中的纳米/微米级机械能转化为电能,从而实现电力自给自足该项目以 PI(Wang)最近开发的柔性纳米发电机(NG)为基础,这是一种利用聚合物压电材料有效地将机械能转换为电能的新方法。 Co-I (Cai) 在小动物体内成像研究和外科手术方面拥有超过 10 年的经验,Co-I 博士专注于临床心脏手术和心脏生理学的所有领域,并将监督和指导。他们共同组成了一个具有互补专业知识的协同团队,以执行拟议工作中所需的先进外科手术,以设计、研究和优化拟议的体外和体内植入式 NG。具有海绵状内部介孔的聚偏氟乙烯 (PVDF) 将控制孔隙尺寸和密度,以设计膜的机械和压电性能,从而最大限度地提高机械能吸收和转换。优化在模拟体内条件下收集生物机械能的形态相关能力。将研究封装材料和电路,以最大限度地减少 NG 的杂散电流。
在具体目标3中,我们将通过疤痕组织生长、缝合和针孔辅助附着等一系列策略来提高NG膜在肌肉/组织表面的长期稳定性,以及静态和动态粘附稳定性。在特定目标 4 中,将研究和优化潜在的炎症和生物污染问题,利用体内技术研究从肢体运动、心跳和膈肌扩张中获取生物机械能量的形态相关能力。这项研究将克服制造生物相容性压电聚合物纳米结构的难以克服的挑战,并建立一种从人体提取有用电能的新能力,同时对器官的正常功能影响最小。通过减小尺寸、降低能量密度、最小化保护封装以及解决电池系统的安全问题,对当前救生植入设备的电源组件的进步做出了重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xudong Wang其他文献
Xudong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xudong Wang', 18)}}的其他基金
Implantable Self-Powered Biofeedback Vagus Nerve Stimulator for Weight Control
用于体重控制的植入式自供电生物反馈迷走神经刺激器
- 批准号:
10801765 - 财政年份:2023
- 资助金额:
$ 33.3万 - 项目类别:
Nanogenerator-Driven Self-Sustainable Power Source for Intracardiac Pacemakers
用于心内起搏器的纳米发电机驱动的自持续电源
- 批准号:
10615800 - 财政年份:2021
- 资助金额:
$ 33.3万 - 项目类别:
Nanogenerator-Driven Self-Sustainable Power Source for Intracardiac Pacemakers
用于心内起搏器的纳米发电机驱动的自持续电源
- 批准号:
10534064 - 财政年份:2021
- 资助金额:
$ 33.3万 - 项目类别:
Nanogenerator-Driven Self-Sustainable Power Source for Intracardiac Pacemakers
用于心内起搏器的纳米发电机驱动的自持续电源
- 批准号:
10415097 - 财政年份:2021
- 资助金额:
$ 33.3万 - 项目类别:
Nanogenerator-Driven Self-Sustainable Power Source for Intracardiac Pacemakers
用于心内起搏器的纳米发电机驱动的自持续电源
- 批准号:
10831936 - 财政年份:2021
- 资助金额:
$ 33.3万 - 项目类别:
Nanogenerator-Driven Self-Sustainable Power Source for Intracardiac Pacemakers
用于心内起搏器的纳米发电机驱动的自持续电源
- 批准号:
10182276 - 财政年份:2021
- 资助金额:
$ 33.3万 - 项目类别:
Membranous Nanogenerators for in vivo Bio-mechanical Energy Harvesting
用于体内生物机械能量收集的膜纳米发电机
- 批准号:
9977061 - 财政年份:2016
- 资助金额:
$ 33.3万 - 项目类别:
Membranous Nanogenerators for in vivo Bio-mechanical Energy Harvesting
用于体内生物机械能量收集的膜纳米发电机
- 批准号:
9266759 - 财政年份:2016
- 资助金额:
$ 33.3万 - 项目类别:
相似国自然基金
欧拉描述下求粘弹塑性材料残余应力和自由边界的有限元方法
- 批准号:11302051
- 批准年份:2013
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The circuit basis of sundowning-related circadian dysfunction in Alzheimer's disease and Alzheimer's disease-related dementias
阿尔茨海默病和阿尔茨海默病相关痴呆中日落相关昼夜节律功能障碍的回路基础
- 批准号:
10807621 - 财政年份:2023
- 资助金额:
$ 33.3万 - 项目类别:
Behavioral and Molecular Consequences of Tau Pathology in Locus Coeruleus in Prodromal Alzheimer's Disease
阿尔茨海默病前驱期蓝斑 Tau 蛋白病理学的行为和分子后果
- 批准号:
10604890 - 财政年份:2023
- 资助金额:
$ 33.3万 - 项目类别:
Novel formulation technology for the sustained release naloxone to improve outcomes in the management of opioid overdose
缓释纳洛酮的新型配方技术可改善阿片类药物过量的治疗结果
- 批准号:
10786306 - 财政年份:2023
- 资助金额:
$ 33.3万 - 项目类别:
Novel Reengineered Microbiome-based Biologic Therapy to Treat Cognitive and Behavioral Symptoms of Alzheimer's Disease and Related Dementias
基于微生物组的新型生物疗法可治疗阿尔茨海默病和相关痴呆症的认知和行为症状
- 批准号:
10527152 - 财政年份:2022
- 资助金额:
$ 33.3万 - 项目类别:
Preclinical assessment of a Sterol Carrier Protein-2 inhibitor in multidimensional opioid withdrawal.
甾醇载体蛋白 2 抑制剂在多维阿片类药物戒断中的临床前评估。
- 批准号:
10671726 - 财政年份:2022
- 资助金额:
$ 33.3万 - 项目类别: