Deep radiomic decision support system for colorectal cancer

结直肠癌深度放射组学决策支持系统

基本信息

  • 批准号:
    9566185
  • 负责人:
  • 金额:
    $ 43.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Computer-aided detection (CADe) has been shown to increase readers’ sensitivity and reduce inter-observer variance in detecting abnormalities in medical images. However, they prompt relatively large numbers of false positives (FPs) that readers find tedious to review and, during this process, the readers can incorrectly dismiss true lesions prompted correctly to them by CADe systems. Thus, there is a demand for an advanced decision support system that would provide not only high detection sensitivity, but also high specificity while being able to explain why a specific location was prompted as a lesion. In this project, we propose to improve the detection specificity of CADe by deep convolutional neural networks (DCNNs) that can analyze the extrinsic radiomic phenotype, such as the context of local anatomy, of target lesions, whereas current CADe systems consider only the intrinsic radiomic phenotype, such as the shape and texture of detected lesions. Further, we can use DCNNs to provide an explanation of why a specific location was prompted by using anatomically meaningful object categories with similar-image retrieval of past diagnosed cases. In this project, we will focus on computed tomographic colonography (CTC), which is a minimally invasive screening method for early detection of colorectal lesions to prevent colorectal cancer (CRC), which is the second leading cause of cancer deaths in the United States. Historically, however, only adenomas were believed to be precursors of CRC. Recent studies have revealed a molecular pathway where also serrated lesions can develop into CRC. Recent studies have indicated that CTC can detect serrated lesions accurately based upon the phenomenon called contrast coating. Thus, the goal of this project is to develop a deep radiomic decision support (DeepDES) system that leverages deep learning for providing high sensitivity and specificity in the detection of colorectal lesions, in particular, serrated lesions, and for providing diagnostic information that explains why a specific location was prompted as a lesion to assist readers in assessing detected lesions correctly. To achieve the goal, we will explore the following specific aims: (1) Develop a radiomic deep-learning (RAID) scheme for the detection of colorectal lesions, (2) develop a DeepDES system for diagnosis of detected lesions, and (3) evaluate the clinical benefit of DeepDES system. Successful development of the proposed DeepDES system will provide an advanced decision support that addresses the current concerns about CADe by yielding both high detection sensitivity and high specificity while being able to explain why a specific location was prompted as a target lesion. Broad adoption and use of the DeepDES system will advance the prevention and early diagnosis of cancer, and thus will ultimately reduce mortality from colorectal cancer in the United States.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HIROYUKI YOSHIDA其他文献

HIROYUKI YOSHIDA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HIROYUKI YOSHIDA', 18)}}的其他基金

Survival prediction in patients with progressive fibrosing interstitial lung disease
进行性纤维化间质性肺病患者的生存预测
  • 批准号:
    10644030
  • 财政年份:
    2022
  • 资助金额:
    $ 43.6万
  • 项目类别:
Survival prediction in patients with progressive fibrosing interstitial lung disease
进行性纤维化间质性肺病患者的生存预测
  • 批准号:
    10503417
  • 财政年份:
    2022
  • 资助金额:
    $ 43.6万
  • 项目类别:
Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
  • 批准号:
    9764151
  • 财政年份:
    2017
  • 资助金额:
    $ 43.6万
  • 项目类别:
Spectral precision imaging for early diagnosis of colorectal lesions with CT colonography
CT结肠成像光谱精密成像用于结直肠病变的早期诊断
  • 批准号:
    10308462
  • 财政年份:
    2017
  • 资助金额:
    $ 43.6万
  • 项目类别:
Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
  • 批准号:
    9288493
  • 财政年份:
    2017
  • 资助金额:
    $ 43.6万
  • 项目类别:
Spectral precision imaging for early diagnosis of colorectal lesions with CT colonography
CT结肠成像光谱精密成像用于结直肠病变的早期诊断
  • 批准号:
    10054168
  • 财政年份:
    2017
  • 资助金额:
    $ 43.6万
  • 项目类别:
Dynamic-CT-based biomarker for predicting clinical outcome in CRC
基于动态 CT 的生物标志物用于预测 CRC 的临床结果
  • 批准号:
    8893927
  • 财政年份:
    2014
  • 资助金额:
    $ 43.6万
  • 项目类别:
Dynamic-CT-based biomarker for predicting clinical outcome in CRC
基于动态 CT 的生物标志物用于预测 CRC 的临床结果
  • 批准号:
    8757781
  • 财政年份:
    2014
  • 资助金额:
    $ 43.6万
  • 项目类别:
Cloud-computer-aided diagnostic imaging decision support system
云计算机辅助影像诊断决策支持系统
  • 批准号:
    8848046
  • 财政年份:
    2012
  • 资助金额:
    $ 43.6万
  • 项目类别:
Cloud-computer-aided diagnostic imaging decision support system
云计算机辅助影像诊断决策支持系统
  • 批准号:
    8276007
  • 财政年份:
    2012
  • 资助金额:
    $ 43.6万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 43.6万
  • 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 43.6万
  • 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
  • 批准号:
    10688715
  • 财政年份:
    2023
  • 资助金额:
    $ 43.6万
  • 项目类别:
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
  • 批准号:
    10600737
  • 财政年份:
    2023
  • 资助金额:
    $ 43.6万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 43.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了