Elucidating the role of small RNA pathways in heat-stress induced DNA damage during spermatogenesis
阐明小RNA途径在精子发生过程中热应激诱导的DNA损伤中的作用
基本信息
- 批准号:9794650
- 负责人:
- 金额:$ 6.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-28 至 2021-03-27
- 项目状态:已结题
- 来源:
- 关键词:AffectBiological AssayBiological ModelsBiological ProcessBody TemperatureCaenorhabditis elegansCell DeathComplementComplexDNA DamageDNA RepairDataDevelopmentDevelopmental ProcessDiseaseExcisionExposure toFemaleFertilityGametogenesisGenerationsGenetic ModelsGenomeGenomicsGerm CellsGerm LinesHeat Stress DisordersHeat-Shock ResponseHigh temperature of physical objectHumanInfertilityLightLinkLocationMaintenanceMale InfertilityMalignant NeoplasmsMammalsMapsMediatingMediator of activation proteinMeiosisMonitorNatureNematodaOocytesPPBP genePathway interactionsPhenotypePlayPopulationProductionProteinsRNARNA InterferenceRegulationRoleSmall RNASouthern BlottingSpermatocytesSpermatogenesisSpontaneous abortionSystemTemperatureTestingTestisThermogenesisTissuesUntranslated RNAWorkdeep sequencingdifferential expressioneggexperimental studyextreme temperaturefollow-upgenetic approachgenome integritygenome-wideimprovedinsightkinetosomemalemutantpiRNApreventprogramssexsperm celltranscriptome sequencing
项目摘要
Project Summary
During meiosis the faithful inheritance of the genome is necessary for successful gamete formation. While
many tissues are affected by extreme temperature changes, developing sperm in the testes are particularly
sensitive to small fluctuations in temperature, with spermatogenesis requiring a narrow isotherm of 2-7°C
below core body temperature. Testes exposed to high temperature display reduced fertility. Studies in
mammals have linked elevated temperatures with an increase in DNA damage in spermatocytes, however the
underlying mechanisms remain unknown. Previous work from the Libuda lab found that, similar to mammals,
exposure to heat-stress produces DNA damage specifically in Caenorhabditis elegans spermatocytes and not
oocytes. Utilizing C. elegans as a model system, transposon mobilization was identified as a possible
mechanism underlying the production of heat-induced DNA damage. Small non-coding RNAs, in complex with
associated proteins, are crucial regulators of germ line development and maintenance, including the regulation
of RNAi and transposon activity. Certain small RNA pathways are also known to be spermatocyte-specific and
play a role in temperature-induced infertility. As such, small RNA pathways in the germ line represent a
promising target as regulators of heat-stress induced DNA damage in spermatocytes. Therefore, I
hypothesize that heat-stress induced DNA damage specifically in spermatocytes is due to transposon
mobilization which is regulated by small RNA pathways in the germ line. To test this, I will take a
multipronged approach, combining a candidate mutant approach with unbiased RNA sequencing to identify
components involved in temperature-induced DNA damage. In Aim 1, I will complete my candidate mutant
screen, monitoring temperature-induced DNA damage in small RNA pathway mutants. I will also use RNA
sequencing to characterize all temperature-sensitive small RNA populations in an unbiased manner. In Aim 2, I
will follow up on my finding that PRG-1, which interacts with piRNAs in the germ line to suppress transposons,
is required for heat-stress induced DNA damage. I will investigate my hypothesis that PRG-1 regulates specific
piRNA subclasses that mediate the production of temperature-induced DNA damage in spermatocytes with a
small RNA sequencing experiment optimized for piRNA analysis. To further explore this result, I will
characterize heat shock-dependent localization and interactions of PRG-1, associated piRNAs, and additional
small RNA pathway components known to act downstream of PRG-1. In Aim 3, I will assess transposon
mobilization upon heat-shock and characterize transposon classes involved in heat-stress induced DNA
damage. I propose to combine deep sequencing and genetic approaches to explore how temperature-induced
DNA damage occurs specifically in spermatocytes using the nematode C. elegans. Overall, these data will
make a substantial contribution toward improving our understanding of these important biological processes
that are relevant to human infertility and disease.
项目概要
在减数分裂期间,基因组的忠实遗传对于配子的成功形成是必要的。
许多组织都会受到极端温度变化的影响,在测试中发育中的精子尤其受到影响
对温度的微小波动敏感,精子发生需要 2-7°C 的狭窄等温线
低于核心体温的研究表明,暴露于高温下的生育能力会降低。
哺乳动物的体温升高会导致精母细胞 DNA 损伤增加,但是
Libuda 实验室之前的研究发现,与哺乳动物类似,潜在的机制仍然未知。
暴露于热应激会导致 DNA 损伤,特别是在秀丽隐杆线虫精母细胞中,而不是
利用秀丽隐杆线虫作为模型系统,转座子动员被认为是一种可能的方法。
热诱导 DNA 损伤产生的机制。
相关蛋白是种系发育和维持的重要调节因子,包括调节
RNAi 和转座子活性的某些小 RNA 途径也被认为是精母细胞特异性的。
因此,生殖系中的小 RNA 通路代表了一种在温度引起的不育中发挥作用的因素。
因此,我认为作为热应激诱导的精母细胞 DNA 损伤的调节剂是有前景的。
研究表明,热应激引起的 DNA 损伤(特别是在精母细胞中)是由转座子引起的
动员是由种系中的小RNA途径调节的。为了测试这一点,我将采取一个实验。
多管齐下的方法,将候选突变方法与无偏 RNA 测序相结合来识别
在目标 1 中,我将完成我的候选突变体。
筛选,监测小 RNA 途径突变体中温度诱导的 DNA 损伤,我还将使用 RNA。
测序以公正的方式表征所有温度敏感的小 RNA 群体。在目标 2 中,I。
将跟进我的发现 PRG-1,它与种系中的 piRNA 相互作用以抑制转座子,
是热应激诱导的 DNA 损伤所必需的,我将研究 PRG-1 调节特定的假设。
piRNA 亚类介导精母细胞中温度诱导的 DNA 损伤的产生
为了进一步探索这个结果,我将针对 piRNA 分析进行优化的小 RNA 测序实验。
表征 PRG-1、相关 piRNA 和其他物质的热休克依赖性定位和相互作用
已知在 PRG-1 下游发挥作用的小 RNA 通路成分 在目标 3 中,我将评估转座子。
热激后的动员和热应激诱导 DNA 中涉及的转座子类别的表征
我建议结合深度测序和遗传方法来探索温度如何诱导
DNA 损伤特别发生在使用线虫的精母细胞中。 总的来说,这些数据将。
为提高我们对这些重要生物过程的理解做出重大贡献
与人类不孕症和疾病有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicole A Kurhanewicz其他文献
Nicole A Kurhanewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicole A Kurhanewicz', 18)}}的其他基金
Regulation of sexually dimorphic piRNA pathways in heat-induced infertility
热诱导不孕症中性二态性 piRNA 通路的调节
- 批准号:
10575828 - 财政年份:2022
- 资助金额:
$ 6.37万 - 项目类别:
Elucidating the role of small RNA pathways in heat-stress induced DNA damage during spermatogenesis
阐明小RNA途径在精子发生过程中热应激诱导的DNA损伤中的作用
- 批准号:
10222443 - 财政年份:2018
- 资助金额:
$ 6.37万 - 项目类别:
相似国自然基金
生物视觉机制启发的图像感知模型与非匀表面视觉检测方法
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
声波调控下反映鱼类行为的生物电信号随机共振检测模型及应用基础研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
基于微纳检测系统的微生物细胞多参量信息采集与建模
- 批准号:61903157
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于介电特性和电磁通量研究生物标记物精确测量模型
- 批准号:61801146
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于fMRI-GCM的海员脑功能有效连接检测及应用研究
- 批准号:31870979
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Uncovering the Functional Effects of Neurotrophins in the Auditory Brainstem
揭示神经营养素对听觉脑干的功能影响
- 批准号:
10823506 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
REGULATION OF BONE MARROW MESENCHYMAL STEM CELLS BY VCAM1
VCAM1 对骨髓间充质干细胞的调节
- 批准号:
10537391 - 财政年份:2023
- 资助金额:
$ 6.37万 - 项目类别:
The Role of Astrocyte Elevated Gene-1 (AEG-1), A Novel Multifunctional Protein, In Chemotherapy-Induced Peripheral Neuropathy
星形胶质细胞升高基因 1 (AEG-1)(一种新型多功能蛋白)在化疗引起的周围神经病变中的作用
- 批准号:
10679708 - 财政年份:2023
- 资助金额:
$ 6.37万 - 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
- 批准号:
10696749 - 财政年份:2023
- 资助金额:
$ 6.37万 - 项目类别: