The molecular mechanism of clonal dominance in 5q(del) MDS
5q(del)MDS克隆优势的分子机制
基本信息
- 批准号:9795448
- 负责人:
- 金额:$ 34.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:Adenomatous Polyposis ColiAffectBinding SitesBiological AssayBone Marrow CellsCD34 geneCell MaintenanceCellsChIP-seqChromosome DeletionChromosome abnormalityClone CellsComplexData AnalysesDevelopmentDisadvantagedDiseaseDoseDown-RegulationDysmyelopoietic SyndromesEquilibriumEventFOXM1 geneFamilyFunctional disorderGene DosageGene Expression ProfilingGene MutationGenesGenetic TranscriptionGrowthHematologic NeoplasmsHematologyHematopoiesisHematopoietic stem cellsHumanImmunologyIn VitroIneffective HematopoiesisKnowledgeMediatingMicroarray AnalysisMolecularMusNR4A1 geneNatureNeoplasmsNuclear Orphan ReceptorPathogenicityPathway interactionsPatientsPlayRoleSequence AnalysisSignal PathwayStem cellsStressTestingTissuesTransgenic OrganismsTreatment EfficacyTumor Suppressor ProteinsXenograft procedureagedbasebeta catenincasein kinasechromatin modificationchromosome 5q lossdosagegenome-widehematopoietic stem cell expansionhematopoietic stem cell quiescencehematopoietic stem cell self-renewalimprovedin vivoinsightknock-downloss of functionmembernew therapeutic targetnovelself-renewaltranscription factor
项目摘要
Abstract The molecular mechanism of clonal dominance in del(5q) MDS
Myelodysplastic syndrome (MDS) is a clonal stem cell disease, characterized by
ineffective hematopoiesis. Sequence analysis provides direct evidence that almost all bone
marrow cells are clonally derived in MDS. How the initiating MDS stem cell outcompetes normal
hematopoietic stem cells (HSCs) and grows to become dominant in the neoplasm is poorly
understood. Explaining how MDS evolves can help us to develop new strategies to improve the
therapy of MDS by targeting early molecular events in HSCs in MDS. Deletion of chromosome
5q [del(5q)] is one of the most common cytogenetic abnormalities in MDS and therapy-related
MDS. We found that the expression of FOXM1, a member of the forkhead family of transcription
factors, is reduced to approximately 50-60% of normal expression in CD34+ cells from del(5q)
MDS patients. Via loss of function studies, we recently identified a previously unrecognized
function of Foxm1 in hematopoietic stem and progenitor cells (HSPCs). In contrast to its known
function as a pro-proliferation factor in other tissues, conditional deletion of Foxm1 reduces
HSC quiescence, leading to disruption of HSC self-renewal. Our preliminary results revealed
that Foxm1 haploinsufficiency promoted HSC exit from quiescence but induced HSC expansion
with a competitive repopulation advantage. In addition, we identified orphan nuclear receptors
as new down-stream targets of Foxm1 in HSPCs. Orphan nuclear receptors are important
regulators of HSC quiescence and self-renewal and are recognized as novel tumor suppressors
of hematological malignancies. We found that FOXM1 and its downstream targets were all
down-regulated in CD34+ HSPCs from del (5q) MDS patients. Thus, we hypothesize that
moderate downregulation of FOXM1-mediated pathways plays a critical role in establishing
clonal dominance of MDS stem cell in del(5q) MDS patients and that FOXM1 can be targeted
for eliminating MDS stem cells in del(5q) patients. To test this hypothesis, we will 1) determine
the pathogenic role of Foxm1 downregulation in the development of MDS; 2) investigate the
molecular mechanisms that mediate gene dosage-dependent effects of Foxm1 in regulating
HSC quiescence, survival and self-renewal; and 3) determine the upstream pathway that
regulates Foxm1 expression in HSPCs.
We expect that our studies will uncover a dose-dependent role of Foxm1 as a novel
critical regulator of HSC maintenance as well as a novel pathogenic role of Foxm1 in the
development of MDS. We expect to identify novel molecular mechanisms that regulate HSC
quiescence, survival and self-renewal. These studies will provide mechanistic insights into the
acquisition of clonal advantage by MDS stem cells at early stages of del(5q) MDS. Our studies
likely will lead to the identification of more effective therapeutic strategies for eliminating
disease-propagating cells at early stages of del(5q) MDS by targeting FOXM1.
摘要 del(5q) MDS 克隆优势的分子机制
骨髓增生异常综合征(MDS)是一种克隆干细胞疾病,其特征为
序列分析提供了几乎所有骨的无效造血的直接证据。
MDS 中的骨髓细胞是克隆衍生的。起始 MDS 干细胞如何在竞争中胜过正常细胞。
造血干细胞(HSC)在肿瘤中生长并成为主导细胞的能力很差
解释 MDS 如何演变可以帮助我们制定新的策略来改进。
通过针对MDS中HSC的早期分子事件来治疗MDS。
5q [del(5q)] 是 MDS 和治疗相关的最常见的细胞遗传学异常之一
MDS。我们发现FOXM1(转录叉头家族的成员)的表达
CD34+ 细胞中 del(5q) 的表达量减少至正常表达的约 50-60%
通过功能丧失研究,我们最近发现了一种以前未被识别的 MDS 患者。
Foxm1 在造血干细胞和祖细胞 (HSPC) 中的功能与其已知的功能相反。
作为其他组织中的促增殖因子,条件性删除 Foxm1 可减少
HSC 静止,导致 HSC 自我更新中断。我们的初步结果显示。
Foxm1 单倍体不足促进 HSC 退出静止状态,但诱导 HSC 扩增
此外,我们还发现了核孤儿受体。
作为 HSPC 中 Foxm1 的新下游靶点非常重要。
HSC 静止和自我更新的调节因子,被认为是新型肿瘤抑制因子
我们发现FOXM1及其下游靶标都是血液系统恶性肿瘤的。
del (5q) MDS 患者的 CD34+ HSPC 下调,因此,我们对此感到困惑。
FOXM1 介导的通路的中度下调在建立
del(5q) MDS 患者中 MDS 干细胞的克隆优势,并且可以靶向 FOXM1
用于消除 del(5q) 患者中的 MDS 干细胞。为了检验这一假设,我们将 1) 确定
Foxm1 下调在 MDS 发展中的致病作用 2) 研究
介导 Foxm1 基因剂量依赖性调节作用的分子机制
HSC 静止、存活和自我更新;3) 确定上游途径
调节 HSPC 中 Foxm1 的表达。
我们期望我们的研究将揭示 Foxm1 作为一种新型药物的剂量依赖性作用
Foxm1 是 HSC 维持的关键调节因子以及新的致病作用
我们期望找到调节 HSC 的新分子机制。
这些研究将为我们提供关于静止、生存和自我更新的机制见解。
MDS 干细胞在 del(5q) MDS 的早期阶段获得克隆优势。
可能会导致确定更有效的治疗策略来消除
通过靶向 FOXM1,在 del(5q) MDS 早期阶段抑制疾病传播细胞。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TFII-I/Gtf2i and Erythro-Megakaryopoiesis.
- DOI:10.3389/fphys.2020.590180
- 发表时间:2020
- 期刊:
- 影响因子:4
- 作者:Gurumurthy A;Wu Q;Nar R;Paulsen K;Trumbull A;Fishman RC;Brand M;Strouboulis J;Qian Z;Bungert J
- 通讯作者:Bungert J
Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response.
- DOI:10.1093/nar/gkab415
- 发表时间:2021-06-04
- 期刊:
- 影响因子:14.9
- 作者:Yu F;Wei J;Cui X;Yu C;Ni W;Bungert J;Wu L;He C;Qian Z
- 通讯作者:Qian Z
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhijian Qian其他文献
Zhijian Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhijian Qian', 18)}}的其他基金
The Novel Role and Mechanism of RBM33 in Leukemogenesis
RBM33 在白血病发生中的新作用和机制
- 批准号:
10343898 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The role of ALKBH5-mediated RNA demethylation in the maintenance of genomic stability in HSPCs
ALKBH5 介导的 RNA 去甲基化在维持 HSPC 基因组稳定性中的作用
- 批准号:
10445661 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The role of ALKBH5-mediated RNA demethylation in the maintenance of genomic stability in HSPCs
ALKBH5 介导的 RNA 去甲基化在维持 HSPC 基因组稳定性中的作用
- 批准号:
10669161 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
Role of the TET1 short isoform in MDS development and maintenance
TET1 短亚型在 MDS 开发和维护中的作用
- 批准号:
10363322 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The role of YTHDC1 in normal and malignant hematopoiesis
YTHDC1在正常和恶性造血中的作用
- 批准号:
10620127 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The Novel Role and Mechanism of RBM33 in Leukemogenesis
RBM33 在白血病发生中的新作用和机制
- 批准号:
10623163 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
Role of the TET1 short isoform in MDS development and maintenance
TET1 短亚型在 MDS 开发和维护中的作用
- 批准号:
10552668 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The role of YTHDC1 in normal and malignant hematopoiesis
YTHDC1在正常和恶性造血中的作用
- 批准号:
10361997 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The role of ALKBH5-mediated RNA demethylation in the maintenance of genomic stability in HSPCs
ALKBH5 介导的 RNA 去甲基化在维持 HSPC 基因组稳定性中的作用
- 批准号:
10476005 - 财政年份:2021
- 资助金额:
$ 34.31万 - 项目类别:
The molecular mechanism of clonal dominance in 5q(del) MDS
5q(del)MDS克隆优势的分子机制
- 批准号:
9312796 - 财政年份:2016
- 资助金额:
$ 34.31万 - 项目类别:
相似国自然基金
CTCF蛋白DNA结合位点遗传变异对灵长类三维基因组结构和功能影响的研究
- 批准号:31970562
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
CRISPR/Cas9遗传学DNA片段编辑技术研究CTCF结合位点的数量对基因组高级结构和转录调控的影响
- 批准号:31800636
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
坦布苏病毒囊膜E蛋白GAGs受体结合域氨基酸位点变异对病毒致病性的影响
- 批准号:31802200
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
赤眼鳟与草鱼MDA5基因结构差异及其功能影响
- 批准号:31802288
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
HBsAg启动子区转录因子Sp1结合位点新发突变对乙肝病毒生物学功能的影响及机制研究
- 批准号:81702050
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The molecular mechanism of clonal dominance in 5q(del) MDS
5q(del)MDS克隆优势的分子机制
- 批准号:
9312796 - 财政年份:2016
- 资助金额:
$ 34.31万 - 项目类别:
Chromatin associated functions of the APC tumor suppressor
APC 肿瘤抑制因子的染色质相关功能
- 批准号:
8457789 - 财政年份:2014
- 资助金额:
$ 34.31万 - 项目类别:
Chromatin associated functions of the APC tumor suppressor
APC 肿瘤抑制因子的染色质相关功能
- 批准号:
8796116 - 财政年份:2014
- 资助金额:
$ 34.31万 - 项目类别:
LRH-1: Structure-based Approach to Drug Design for Gastrointestinal Tumors
LRH-1:基于结构的胃肠道肿瘤药物设计方法
- 批准号:
8314808 - 财政年份:2012
- 资助金额:
$ 34.31万 - 项目类别:
LRH-1: Structure-based Approach to Drug Design for Gastrointestinal Tumors
LRH-1:基于结构的胃肠道肿瘤药物设计方法
- 批准号:
8460183 - 财政年份:2012
- 资助金额:
$ 34.31万 - 项目类别: