Critical resources to evaluate CT scan techniques and dose reduction approaches
评估 CT 扫描技术和剂量减少方法的关键资源
基本信息
- 批准号:8719101
- 负责人:
- 金额:$ 82.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsClinicalCommunitiesComputer softwareDataData SetDevelopmentDiagnosisDiagnosticDiagnostic ImagingDiseaseDocumentationDoseEnsureEtiologyEvaluationExcisionGoldHumanImageIonizing radiationLinkLocationLow Dose RadiationMapsMeasuresMedicalMethodsMetricModelingNational Institute of Biomedical Imaging and BioengineeringNoiseOutputPathologyPatient CarePatientsPerformancePhysiciansProtocols documentationProviderReaderRecording of previous eventsReference StandardsResearchResearch PersonnelResourcesRiskScanningScientistSimulateSoftware ToolsTechniquesTimeTranslatingTranslationsValidationWorkX-Ray Computed Tomographyabstractingbaseclinical practiceclinically relevantdiagnostic accuracyimage reconstructioninnovationmeetingsnew technologynovelnovel strategiespatient safetypublic health relevanceradiologistreconstructionsoftware developmentstandard measuretool
项目摘要
DESCRIPTION (provided by applicant): Computed tomography (CT) provides important medical benefits, but for patient safety it is essential that CT providers use the lowest dose of radiation consistent with achieving the needed diagnostic performance. New algorithmic approaches to image reconstruction will be critical to reducing the dose without compromising image quality; however, the development of novel approaches to image reconstruction is hampered because many image scientists do not have access to CT projection data from patient exams. We propose to develop data sets, metrics, and software tools that will help investigators create and compare new approaches to dose reduction and will guide clinical users in selecting optimized scanning parameters and reconstruction methods. In Aim 1, we will make reference patient data sets available to researchers in a standardized format after removal of proprietary information. These data will include projection data, statistical noise maps, reconstructed images, and clinical reference information (validation of diagnosis and location, abstracted patient history) for common CT exams, as well as data simulating lower exposure levels. These data sets will greatly expand the pool of researchers that can develop and evaluate algorithms, and will permit comparison of competing approaches. The gold standard for measuring diagnostic performance, observer performance studies, is however very expensive and time consuming. In Aim 2, we will develop highly automated, interactive, and freely available software tools that will facilitate rapid completion of observer performance studies in order to efficiently and meaningfully compare alternative scanning protocols and reconstruction methods. Still, because of the rapid pace of technical innovation, a substitute for efficient observer performance studies is essential to rapidly translate advances in dose reduction into patient care. Although task-based image quality metrics using model observers are attractive for this purpose, they have not been demonstrated to correlate with radiologist performance in clinical CT imaging. In Aim 3, we will determine model observers that are substantially correlated with human observer performance in patient data for three common diagnostic tasks and for linear and non-linear image reconstruction techniques. Finally, quantitative methods are needed to assist clinical practices in choosing scanning protocol parameters that will achieve the required level of diagnostic performance using the lowest radiation dose. In Aim 4, we will develop tools to efficiently and quantitatively optimize CT scanning protocols for specific diagnostic tasks. These tools will calculate quantitative measures of task-based image quality from easily performed phantom scans and will recommend scanning protocol parameters that will deliver the closest match to the desired level of diagnostic performance using the lowest radiation dose. This research is highly innovative and significant in that it will provide the CT community with novel data, methods, and software tools for objective evaluation and efficient optimization of scanning protocol parameters and emerging dose reduction approaches.
描述(由申请人提供):计算机断层扫描(CT)提供了重要的医疗益处,但是为了患者安全,CT提供商必须使用最低剂量的辐射剂量,与实现所需的诊断性能一致。图像重建的新算法方法对于减少剂量而不会损害图像质量至关重要。但是,由于许多图像科学家无法从患者考试中访问CT投影数据,因此可以开发新的图像重建方法。我们建议开发数据集,指标和软件工具,以帮助调查人员创建和比较减少剂量的新方法,并将指导临床用户选择优化的扫描参数和重建方法。在AIM 1中,我们将在删除专有信息后以标准化格式提供参考患者数据集。这些数据将包括投影数据,统计噪声图,重建图像和临床参考信息(诊断和位置的验证,抽象的患者历史记录)以及模拟较低暴露水平的数据。这些数据集将大大扩展可以开发和评估算法的研究人员池,并允许对竞争方法进行比较。测量诊断性能的黄金标准,即观察者性能研究,但是非常昂贵且耗时。在AIM 2中,我们将开发高度自动化,交互式和自由使用的软件工具,这些工具将有助于快速完成观察者绩效研究,以便有效而有意义地比较替代扫描协议和重建方法。尽管如此,由于技术创新的速度迅速,对于有效的观察者绩效研究的替代品对于迅速将剂量减少的进步转化为患者护理至关重要。尽管使用模型观察者的基于任务的图像质量指标为此目的具有吸引力,但尚未证明它们与临床CT成像中的放射科医生的性能相关。在AIM 3中,我们将确定模型观察者与人类观察者在患者数据中基本相关的三个常见诊断任务以及线性和非线性图像重建技术的模型观察者。最后,需要定量方法来协助临床实践选择扫描协议参数,以使用最低的辐射剂量达到所需的诊断性能水平。在AIM 4中,我们将开发工具来有效,定量优化针对特定诊断任务的CT扫描协议。这些工具将通过轻松执行的幻影扫描来计算基于任务的图像质量的定量度量,并建议使用最低的辐射剂量实现最接近所需诊断性能水平的扫描协议参数。这项研究具有很高的创新性和重要意义,因为它将为CT社区提供新颖的数据,方法和软件工具,以进行客观评估和有效优化扫描协议参数和新兴剂量减少方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia H McCollough其他文献
Cynthia H McCollough的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia H McCollough', 18)}}的其他基金
Quantitative, non-invasive characterization of urinary stone composition and fragility using multi-energy CT and machine learning techniques
使用多能量 CT 和机器学习技术对尿路结石成分和脆性进行定量、非侵入性表征
- 批准号:
10377461 - 财政年份:2019
- 资助金额:
$ 82.89万 - 项目类别:
Trade-offs in human observer performance, image quality metrics, and patient dose
人类观察者表现、图像质量指标和患者剂量的权衡
- 批准号:
9901529 - 财政年份:2019
- 资助金额:
$ 82.89万 - 项目类别:
Trade-offs in human observer performance, image quality metrics, and patient dose
人类观察者表现、图像质量指标和患者剂量的权衡
- 批准号:
10322422 - 财政年份:2019
- 资助金额:
$ 82.89万 - 项目类别:
Critical resources to evaluate CT scan techniques and dose reduction approaches
评估 CT 扫描技术和剂量减少方法的关键资源
- 批准号:
9261249 - 财政年份:2016
- 资助金额:
$ 82.89万 - 项目类别:
Photon-Counting Spectral CT to Reduce Dose and Detect Early Vascular Disease
光子计数能谱 CT 可减少剂量并检测早期血管疾病
- 批准号:
8921199 - 财政年份:2013
- 资助金额:
$ 82.89万 - 项目类别:
Photon-Counting Spectral CT to Reduce Dose and Detect Early Vascular Disease
光子计数能谱 CT 可减少剂量并检测早期血管疾病
- 批准号:
8636831 - 财政年份:2013
- 资助金额:
$ 82.89万 - 项目类别:
Critical resources to evaluate CT scan techniques and dose reduction approaches
评估 CT 扫描技术和剂量减少方法的关键资源
- 批准号:
9134142 - 财政年份:2013
- 资助金额:
$ 82.89万 - 项目类别:
Critical resources to evaluate CT scan techniques and dose reduction approaches
评估 CT 扫描技术和剂量减少方法的关键资源
- 批准号:
8550930 - 财政年份:2013
- 资助金额:
$ 82.89万 - 项目类别:
Photon-Counting Spectral CT to Reduce Dose and Detect Early Vascular Disease
光子计数能谱 CT 可减少剂量并检测早期血管疾病
- 批准号:
9133377 - 财政年份:2013
- 资助金额:
$ 82.89万 - 项目类别:
Photon-Counting Spectral CT to Reduce Dose and Detect Early Vascular Disease
光子计数能谱 CT 可减少剂量并检测早期血管疾病
- 批准号:
8744689 - 财政年份:2013
- 资助金额:
$ 82.89万 - 项目类别:
相似国自然基金
基于机器学习算法的针刺干预偏头痛预后差异生物学机制和临床-多组学预测模型构建研究
- 批准号:82374572
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
sc3S+结构型剪接元件预测算法揭示干性剪接因子ELAVL2调控肝母细胞瘤恶性演进的机制及临床应用研究
- 批准号:82302642
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人类基因相关临床表型预测的高效算法研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
融合大脑白质微结构和网络拓扑分析的AD临床早期辅助诊断算法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于早期临床数据-基因组学和机器学习算法研究脓毒症表型的构建、机制及治疗
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Transcranial Ultrasound Algorithms and Device for Rapid Stroke Determination by Paramedics
用于医护人员快速确定中风的经颅超声算法和设备
- 批准号:
10730722 - 财政年份:2023
- 资助金额:
$ 82.89万 - 项目类别:
The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
- 批准号:
10676428 - 财政年份:2023
- 资助金额:
$ 82.89万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 82.89万 - 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
- 批准号:
10723819 - 财政年份:2023
- 资助金额:
$ 82.89万 - 项目类别:
Predicting Outcomes for Uterine Fibroid Embolization by using Deep Learning of Paired MRI Scans
使用配对 MRI 扫描的深度学习预测子宫肌瘤栓塞的结果
- 批准号:
10724513 - 财政年份:2023
- 资助金额:
$ 82.89万 - 项目类别: