Deep Brain Stimulation for Depression Using Directional Current Steering and Individualized Network Targeting
使用定向电流引导和个性化网络目标进行深部脑刺激治疗抑郁症
基本信息
- 批准号:10883136
- 负责人:
- 金额:$ 15.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAmygdaloid structureAssessment toolBasic ScienceBedsBehaviorBehavioralBilateralBiological AssayBlindedBostonBrainBrain regionChronicClassificationClinicalClinical TrialsComputer ModelsDataData SetDeep Brain StimulationDevice or Instrument DevelopmentDevicesDiffusionDimensionsDiseaseDoseDouble-Blind MethodEcological momentary assessmentElectrodesElectroencephalographyEngineeringEpilepsyEuropeExcisionFaceFunctional disorderGoalsHealth Care CostsImplantIndividualInpatientsInvestigationLeadLiteratureMediatingMental DepressionModelingMonitorNegative ValenceNetwork-basedNeurocognitiveOutcomeOutpatientsPatientsPatternPhysiologicalPhysiologyPlacebo EffectPositive ValenceProcessPublic HealthRandomizedRegional AnatomyResearchSafetySeveritiesSiteSourceSpatial DistributionStreamSymptomsSystemTechnologyTestingValidationVentral StriatumWithdrawalWorkcapsulecognitive controlcomputerizeddepressive symptomsdisabilityefficacy evaluationimprovedinnovationinsightnervous system disordernetwork modelsneural circuitneuropsychiatric disorderneuroregulationneurosurgerynext generationnovelnovel strategiesnovel therapeuticsopen labelrational designresponsesafety and feasibilitysuccesstherapeutic evaluationtherapy developmenttractographytreatment-resistant depression
项目摘要
ABSTRACT
The public health burden of Treatment Resistant Depression (TRD) has prompted clinical trials of deep brain
stimulation (DBS) that have, unfortunately, produced inconsistent outcomes. Potential gaps and opportunities
include a need: (1) to better understand the neurocircuitry of the disease; (2) for precision DBS devices that
can target brain networks in a clinically and physiologically validated manner; and (3) for greater insight into
stimulation dose-response relationships. These needs are based on our overarching hypothesis that network-
guided neuromodulation is critical for the efficacy of DBS in TRD. This project aims to address the unmet need
of TRD patients by identifying brain networks critical for treating depression and to use next generation
precision DBS with steering capability to engage these targeted networks and develop a new therapy
for TRD. We use the Boston Scientific (BS) Vercise DBS system, which offers a segmented steerable lead
with multiple independent current sources that allows true directional steering. Moreover, this system
integrates stimulation field modeling (SFM) with MR tractography to predict network engagement. We use an
innovative approach of targeting both subgenual cingulate (SGC) and ventral capsule/ventral striatum
(VC/VS), which we term corticomesolimbic DBS. These targets are hubs in distinct yet partially overlapping
depression networks and emerging basic science literature implicates them in bidirectional modulation of
depression circuits. We also apply a paradigm-shifting approach using intracranial stereo-EEG (sEEG)
subacutely after DBS implant to evaluate the clinical reliability of steering, SFMs, and tractography and to
define and then target the networks mediating symptoms of depression. In Aim 1, in the Epilepsy Monitoring
Unit (EMU), we investigate the capability of Vercise to selectively engage distinct brain networks and compare
the spatial distribution of evoked network activity and modulation with that predicted by SFM and tractography.
In Aim 2, we conduct further studies in the EMU to delineate depression-relevant networks and show
behavioral changes with network-targeted stimulation. We use a variety of tasks to probe different symptom
domains and novel assessment tools (Computerized Adaptive Testing and Automated Facial Affect
Recognition) to enhance classification and model algorithms to optimize stimulation patterns. In Aim 3, we
bring the results from Aims 1 and 2 together, to test the therapeutic potential of corticomesolimbic DBS in 12
subjects with TRD, with a focus on safety, feasibility, and preliminary efficacy in a 8-month open label trial with
a subsequent randomized, blinded withdrawal of stimulation to assess efficacy. The impact of this proposal
includes physiological validation of current “steering” DBS technology to target specific networks, insights into
effects of stimulation parameters on network physiology, an improved understanding of the pathophysiology of
depression, and, perhaps most importantly, a novel approach for treating TRD. This research will also pioneer
a novel and high-yield test bed for DBS therapy development consistent with BRAIN priorities.
抽象的
难治性抑郁症(TRD)的公共卫生负担促使深部脑的临床试验
不幸的是,刺激(DBS)产生了不一致的结果。
包括以下需求:(1) 更好地了解疾病的神经回路;(2) 精密 DBS 设备
可以通过临床和生理验证的方式针对大脑网络;(3) 更深入地了解
这些需求基于我们的总体假设,即网络-
引导神经调节对于 DBS 在 TRD 中的功效至关重要,该项目旨在解决未满足的需求。
通过识别对治疗抑郁症至关重要的大脑网络并使用下一代技术来治疗 TRD 患者
具有引导能力的精准 DBS 可以参与这些目标网络并开发新疗法
对于 TRD,我们使用 Boston Scientific (BS) Vercise DBS 系统,该系统提供分段可操纵引导。
具有多个独立电流源,可实现真正的方向转向。
我们将刺激场建模 (SFM) 与 MR 纤维束成像相结合来预测网络参与度。
针对膝下扣带回 (SGC) 和腹侧囊/腹侧纹状体的创新方法
(VC/VS),我们称之为皮质边缘 DBS,这些目标是不同但部分重叠的中枢。
抑郁症网络和新兴的基础科学文献表明它们与抑郁症的双向调节有关
我们还应用了颅内立体脑电图(sEEG)的范式转换方法。
DBS 植入后亚急性评估转向、SFM 和纤维束成像的临床可靠性,并
在目标 1 中,癫痫监测中定义并针对介导抑郁症状的网络。
Unit (EMU),我们研究 Vercise 选择性参与不同大脑网络的能力并进行比较
诱发网络活动的空间分布和调制与 SFM 和纤维束描记术预测的结果。
在目标 2 中,我们在 EMU 中进行了进一步的研究,以描绘与抑郁症相关的网络并显示
我们使用各种任务来探究不同的症状。
领域和新颖的评估工具(计算机化自适应测试和自动面部影响
识别)来增强分类和模型算法以优化刺激模式。
将目标 1 和 2 的结果结合在一起,以测试皮质边缘 DBS 在 12 中的治疗潜力
TRD 受试者,在为期 8 个月的开放标签试验中重点关注安全性、可行性和初步疗效
随后随机、盲法撤回刺激以评估该提议的影响。
包括对当前“引导”DBS 技术针对特定网络的生理验证、对
刺激参数对网络生理学的影响,加深对病理生理学的理解
抑郁症,也许最重要的是,治疗 TRD 的新方法这项研究也将成为先驱。
与 BRAIN 优先事项一致的用于 DBS 疗法开发的新颖且高产量的测试床。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wayne K Goodman其他文献
Wayne K Goodman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wayne K Goodman', 18)}}的其他基金
Deep Brain Stimulation for Depression Using Directional Current Steering and Individualized Network Targeting
使用定向电流引导和个性化网络目标进行深部脑刺激治疗抑郁症
- 批准号:
10704418 - 财政年份:2017
- 资助金额:
$ 15.4万 - 项目类别:
DEEP BRAIN STIMULATION FOR DEPRESSION USING DIRECTIONAL CURRENT STEERING AND INDIVIDUALIZED NETWORK TARGETING
使用定向电流引导和个性化网络目标进行深部脑刺激治疗抑郁症
- 批准号:
9564230 - 财政年份:2017
- 资助金额:
$ 15.4万 - 项目类别:
Neuroethics of aDBS Systems Targeting Neuropsychiatric and Movement Disorders
针对神经精神和运动障碍的 aDBS 系统的神经伦理学
- 批准号:
10002034 - 财政年份:2017
- 资助金额:
$ 15.4万 - 项目类别:
Adaptive DBS in Non-Motor Neuropsychiatric Disorders: Regulating Limbic Circuit Imbalance
非运动神经精神疾病的适应性 DBS:调节边缘回路不平衡
- 批准号:
10451827 - 财政年份:2016
- 资助金额:
$ 15.4万 - 项目类别:
Adaptive DBS in Non-Motor Neuropsychiatric Disorders: Regulating Limbic Circuit Imbalance
非运动神经精神疾病的适应性 DBS:调节边缘回路不平衡
- 批准号:
10210305 - 财政年份:2016
- 资助金额:
$ 15.4万 - 项目类别:
Adaptive DBS in Non-Motor Neuropsychiatric Disorders: Regulating Limbic Circuit Imbalance
非运动神经精神疾病的适应性 DBS:调节边缘回路不平衡
- 批准号:
9769905 - 财政年份:2016
- 资助金额:
$ 15.4万 - 项目类别:
Adaptive DBS in Non-Motor Neuropsychiatric Disorders: Regulating Limbic Circuit Imbalance
非运动神经精神疾病的适应性 DBS:调节边缘回路不平衡
- 批准号:
10210305 - 财政年份:2016
- 资助金额:
$ 15.4万 - 项目类别:
Combined Psychiatry Residency and PhD Training at Mount Sinai
西奈山精神病学住院医师培训和博士培训相结合
- 批准号:
8854147 - 财政年份:2013
- 资助金额:
$ 15.4万 - 项目类别:
PILOT STUDY OF DBS FOR TREATMENT-REFRACTORY OCD
DBS 治疗难治性强迫症的试点研究
- 批准号:
7717076 - 财政年份:2007
- 资助金额:
$ 15.4万 - 项目类别:
PILOT STUDY OF DBS FOR TREATMENT-REFRACTORY OCD
DBS 治疗难治性强迫症的试点研究
- 批准号:
7717076 - 财政年份:2007
- 资助金额:
$ 15.4万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别: