Promoting Universal Screening and Early Identification of Child ADHD via Integrated Automatic EHR Supports in Primary Care
通过初级保健中的集成自动 EHR 支持促进儿童 ADHD 的普遍筛查和早期识别
基本信息
- 批准号:10883975
- 负责人:
- 金额:$ 21.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcademyAgeAlgorithmsAmericanAreaAttention deficit hyperactivity disorderBinge eating disorderBipolar DisorderBrain imagingCaringChildChild CareChildhoodClinicalCollaborationsDataDevelopmentDiagnosisDiseaseDisparityEarly identificationEarly treatmentElectronic Health RecordEmergency department visitEthnic OriginFamilyFeedbackFeelingFrequenciesGenderGeneticGoalsGuiltHospitalizationHospitalsIndividualInfrastructureInsurance CoverageInternational Classification of Disease CodesInterventionLanguageLeftLifeLife ExpectancyLiteratureMachine LearningMental HealthMonitorNational Institute of Mental HealthNatural Language ProcessingObsessive compulsive behaviorParentsPatientsPatternPediatric HospitalsPediatricsPharmaceutical PreparationsPhenotypePractice GuidelinesPrimary CarePrivacyProviderRaceRecording of previous eventsResearch PersonnelResearch SupportRiskService delivery modelShameStructureSuicideSurveysSymptomsSystemTechniquesTextTimeUnderserved PopulationUninsuredWell Child VisitsYouthautism spectrum disorderbehavioral healthcostcriminal behaviordemographicsdisparity reductionethnic minorityethnic minority populationhealth care service utilizationhealth disparityhealth equityimplementation barriersimprovedinternalized stigmaliteracylow socioeconomic statusmachine learning algorithmmachine learning methodnovelphenotyping algorithmscreeningscreening guidelinessocial stigmastructured datasubstance usesuicidal behaviortreatment as usualurban children
项目摘要
Abstract
ADHD is among the most common behavioral health conditions presented in pediatric
primary care. When left untreated, ADHD is associated with negative consequences including
suicide, criminal behavior, and serious substance use. The American Academy of Pediatrics
recommends screening for ADHD in primary care for children ages 4-18. Unfortunately,
compliance with practice guidelines and real-world implementation of behavioral health
screening is highly variable. Even with universal behavioral health screening infrastructure in
place, screening rates can remain below 50%. Developing an electronic health record (EHR)
algorithm to identify children at risk for ADHD has the potential to realize universal screening
and facilitate early identification and linkage to care.
The proposed project will: 1) Describe disparities in the frequency of ADHD screening,
diagnosis, and healthcare utilization for children with ADHD, 2) Develop an algorithm to predict
ADHD phenotypes earlier than the typical age of diagnosis using EHR structured and text data,
and 3) Collaborate with stakeholders to develop an implementation roadmap for the
phenotyping algorithm in pediatric primary care. Researchers have successfully applied Natural
Language Processing (NLP) techniques to EHR data to identify patients with behavioral health
conditions, including suicidal behaviors, autism, and bipolar disorder, but NLP has not been
applied to the identification of ADHD. The resulting phenotyping algorithm holds potential to be
integrated into EHR in pediatric primary care to automatically flag children at risk for ADHD in
real-time to trigger closer monitoring, reduce disparities in screening and diagnosis, and initiate
earlier treatment. The resulting phenotyping algorithm and implementation roadmap will set the
stage for a R01 trial to evaluate the clinical utility of an automated EHR phenotyping algorithm in
pediatric primary care.
抽象的
ADHD 是儿科最常见的行为健康状况之一
初级保健。如果不及时治疗,多动症会带来负面后果,包括
自杀、犯罪行为和严重的药物滥用。美国儿科学会
建议在初级保健中对 4-18 岁儿童进行 ADHD 筛查。很遗憾,
遵守行为健康的实践指南和现实世界的实施
筛查的差异很大。即使拥有普遍的行为健康筛查基础设施
地方,筛选率可以保持在 50% 以下。开发电子健康记录 (EHR)
识别多动症风险儿童的算法有可能实现普遍筛查
并促进早期识别和护理联系。
拟议的项目将: 1) 描述多动症筛查频率的差异,
ADHD 儿童的诊断和医疗保健利用,2) 开发一种算法来预测
使用 EHR 结构化和文本数据发现 ADHD 表型早于典型诊断年龄,
3) 与利益相关者合作制定实施路线图
儿科初级保健中的表型分析算法。研究人员成功地将自然
EHR 数据的语言处理 (NLP) 技术可识别行为健康的患者
包括自杀行为、自闭症和双相情感障碍,但 NLP 尚未被广泛应用。
应用于ADHD的识别。由此产生的表型分析算法有可能成为
纳入儿科初级保健的 EHR,自动标记有 ADHD 风险的儿童
实时触发更密切的监测,减少筛查和诊断方面的差异,并启动
及早治疗。由此产生的表型分析算法和实施路线图将设定
R01 试验阶段,旨在评估自动化 EHR 表型分析算法的临床效用
儿科初级保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guodong Gao其他文献
Guodong Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guodong Gao', 18)}}的其他基金
Promoting Universal Screening and Early Identification of Child ADHD via Integrated Automatic EHR Supports in Primary Care
通过初级保健中的集成自动 EHR 支持促进儿童 ADHD 的普遍筛查和早期识别
- 批准号:
10526794 - 财政年份:2022
- 资助金额:
$ 21.25万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Secondary Analysis and Integration of Existing Data Related to Chronic Orofacial Pain and Placebo Effects - Administrative Supplement
与慢性口面部疼痛和安慰剂效应相关的现有数据的二次分析和整合 - 行政补充
- 批准号:
10741330 - 财政年份:2023
- 资助金额:
$ 21.25万 - 项目类别:
RestEaze: A Novel Wearable Device and Mobile Application to Improve the Diagnosis and Management of Restless Legs Syndrome in Patients with Alzheimer's Disease
RestEaze:一种新型可穿戴设备和移动应用程序,可改善阿尔茨海默病患者不宁腿综合症的诊断和管理
- 批准号:
10384159 - 财政年份:2022
- 资助金额:
$ 21.25万 - 项目类别:
Secondary Analysis and Integration of Existing Data Related to Chronic Orofacial Pain and Placebo Effects
与慢性口面部疼痛和安慰剂效应相关的现有数据的二次分析和整合
- 批准号:
10597861 - 财政年份:2022
- 资助金额:
$ 21.25万 - 项目类别:
Validation of the online Toddler Autism and Development Adaptive Screener (TADAS) at 18 months
18 个月大时在线幼儿自闭症和发育适应性筛查 (TADAS) 的验证
- 批准号:
10662589 - 财政年份:2022
- 资助金额:
$ 21.25万 - 项目类别:
Promoting Universal Screening and Early Identification of Child ADHD via Integrated Automatic EHR Supports in Primary Care
通过初级保健中的集成自动 EHR 支持促进儿童 ADHD 的普遍筛查和早期识别
- 批准号:
10526794 - 财政年份:2022
- 资助金额:
$ 21.25万 - 项目类别: