Crowdsourcing Labels and Explanations to Build More Robust, Explainable AI/ML Activity Models
众包标签和解释以构建更强大、可解释的 AI/ML 活动模型
基本信息
- 批准号:10833847
- 负责人:
- 金额:$ 30.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Active LearningAgingAgreementAlzheimer&aposs disease related dementiaAreaBehaviorCategoriesClinicalClinical ResearchCollectionCommunitiesDataData CollectionData SetElderlyFoundationsGoalsHealthIndividualInterventionLabelLearningMachine LearningMechanicsMethodsModelingNeuropsychologyOutcomePerformancePopulationProcessResearchSamplingSeriesSoftware EngineeringTechnologyTextTimeTrainingTrustUncertaintyVisualVisualizationcitizen sciencecrowdsourcingdata toolsdata visualizationdiverse dataexperiencehealth applicationhealth assessmentlearning strategymHealthmachine learning modelmultimodalityparent projectrecruitsensorsmart watchtoolwearable sensor technology
项目摘要
PROJECT SUMMARY / ABSTRACT
As the population of individuals 65+ grows from 58 million to 88 million by 2050, so too will the number of
individuals who are aging with Alzheimer's disease and related dementias (ADRDs)1. The parent project
introduces clinically-driven technological methods to automate assessment of an older adult's functional health
from multimodal sensor data. What is lacking in the community, and in our parent project, is the availability of
ground-truth smartwatch activity labels. Without a sufficient amount of labeled data, machine learning models
cannot learn robust behavior models and use these models for functional health prediction. Additionally, the
categories of activities that have corresponding labels are very skewed, further limiting machine learning
performance because of the classical imbalanced class distribution problem. In this supplement request, we
propose to dramatically increase the availability of labeled smartwatch data for our parent project and for the
field. To do this, we will create a mechanism to crowdsource activity labels through Amazon Mechanical Turk.
Additionally, we will capitalize on the crowdsourcing opportunity to push the parent project to the next step by
laying a foundation for explainable machine learning models. Once our target number of activity labels is
reached, we will initiate a second round of crowdsourcing by asking citizen scientists to create one-sentence
explanations of the visualized data corresponding to an activity instance. The supplement project will contain
four tasks. First, we will create a visualization and data point-selection tool for use in the Amazon Mechanical
Turk (AMT) forum for data collection. A baseline active learning strategy will be used to collect an initial set of
labels and create a baseline model, after which, the active learning and annotator selection strategies will be
refined to collect the remainder of the activity labels. Finally, diverse data points from each modeled category
will be displayed to collect a set of text captions for training explanation models. The outcome of this supplement
project will be one of the largest sets of activity labeled smartwatch data collected “in the wild.” The labeled
datasets created by this supplement will offer a foundation for a multitude of health studies that can utilize
activity information observed by continuous wearable sensor readings collected in real-world studies. For the
parent project, the amount of labeled data will increase by over 10,000%. The supplement will also offer a
starting point for creating explainable mobile health AI/ML tools.
项目概要/摘要
到 2050 年,随着 65 岁以上人口数量从 5800 万增加到 8800 万,
患有阿尔茨海默病和相关痴呆症 (ADRD) 的个体1 父项目。
引入临床驱动的技术方法来自动评估老年人的功能健康
社区和我们的父项目中缺乏的是多模式传感器数据的可用性。
地面实况智能手表活动标签。如果没有足够数量的标记数据,机器学习模型。
无法学习稳健的行为模型并使用这些模型进行功能健康预测。
具有相应标签的活动类别非常倾斜,进一步限制了机器学习
由于经典的不平衡类别分配问题而导致的性能在这个补充请求中,我们。
显着提高我们父项目和
为此,我们将创建一种通过 Amazon Mechanical Turk 众包活动标签的机制。
此外,我们将利用众包机会,通过以下方式将父项目推向下一步:
一旦我们的活动标签数量达到目标,就为可解释的机器学习模型奠定基础。
达成后,我们将启动第二轮众包,要求公民科学家创造一句话
补充项目将包含与活动实例相对应的可视化数据的解释。
首先,我们将创建一个在 Amazon Mechanical 中使用的可视化和数据点选择工具。
Turk (AMT) 数据收集论坛将使用基线主动学习策略来收集初始数据集。
标签并创建基线模型,之后,主动学习和注释器选择策略将是
最后,收集每个建模类别的不同数据点。
将显示收集一组用于训练解释模型的文本标题本补充的结果。
该项目将是“野外”收集的最大的标记智能手表数据的活动之一。
该补充文件创建的数据集将为大量健康研究提供基础,这些研究可以利用
通过在现实世界研究中收集的连续可穿戴传感器读数观察到的活动信息。
父项目中,标记数据量将增加 10,000% 以上。
创建可解释的移动健康 AI/ML 工具的起点。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Partnering a Compensatory Application with Activity-Aware Prompting to Improve Use in Individuals with Amnestic Mild Cognitive Impairment: A Randomized Controlled Pilot Clinical Trial.
将补偿性应用程序与活动感知提示相结合,以改善患有遗忘性轻度认知障碍的个体的使用:一项随机对照试点临床试验。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Schmitter;Brown, Katelyn;Luna, Catherine;Chilton, Reanne;Sumida, Catherine A;Holder, Lawrence;Cook, Diane
- 通讯作者:Cook, Diane
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diane Joyce Cook其他文献
Diane Joyce Cook的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diane Joyce Cook', 18)}}的其他基金
Creating adaptive, wearable technologies to assess and intervene for individuals with ADRDs
创建自适应可穿戴技术来评估和干预 ADRD 患者
- 批准号:
10616670 - 财政年份:2021
- 资助金额:
$ 30.56万 - 项目类别:
Creating adaptive, wearable technologies to assess and intervene for individuals with ADRDs
创建自适应可穿戴技术来评估和干预 ADRD 患者
- 批准号:
10390367 - 财政年份:2021
- 资助金额:
$ 30.56万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10267717 - 财政年份:2020
- 资助金额:
$ 30.56万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10092007 - 财政年份:2020
- 资助金额:
$ 30.56万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10426321 - 财政年份:2020
- 资助金额:
$ 30.56万 - 项目类别:
Multi-modal functional health assessment and intervention for individuals experiencing cognitive decline
针对认知能力下降个体的多模式功能健康评估和干预
- 批准号:
10662381 - 财政年份:2020
- 资助金额:
$ 30.56万 - 项目类别:
Automated Health Assessment through Mobile Sensing and Machine Learning of Daily Activities
通过日常活动的移动传感和机器学习进行自动健康评估
- 批准号:
10683062 - 财政年份:2019
- 资助金额:
$ 30.56万 - 项目类别:
Automated Health Assessment through Mobile Sensing and Machine Learning of Daily Activities
通过日常活动的移动传感和机器学习进行自动健康评估
- 批准号:
10472075 - 财政年份:2019
- 资助金额:
$ 30.56万 - 项目类别:
Automated Health Assessment through Mobile Sensing and Machine Learning of Daily Activities
通过日常活动的移动传感和机器学习进行自动健康评估
- 批准号:
10472075 - 财政年份:2019
- 资助金额:
$ 30.56万 - 项目类别:
A clinician-in-the-loop smart home to support health monitoring and intervention for chronic conditions
临床医生在环智能家居,支持慢性病的健康监测和干预
- 批准号:
10166954 - 财政年份:2017
- 资助金额:
$ 30.56万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
湿热老化下的CFRP胶-螺连接结构疲劳失效机理研究
- 批准号:52305160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
- 批准号:82373460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Promoting Reengagement in Daily Meaningful Activity Intervention for Adults with Mild Cognitive Impairment and Their Caregivers
促进轻度认知障碍成年人及其照顾者重新参与日常有意义的活动干预
- 批准号:
10589844 - 财政年份:2020
- 资助金额:
$ 30.56万 - 项目类别:
Promoting Reengagement in Daily Meaningful Activity Intervention for Adults with Mild Cognitive Impairment and Their Caregivers
促进轻度认知障碍成年人及其照顾者重新参与日常有意义的活动干预
- 批准号:
10378058 - 财政年份:2020
- 资助金额:
$ 30.56万 - 项目类别:
Promoting Reengagement in Daily Meaningful Activity Intervention for Adults with Mild Cognitive Impairment and Their Caregivers
促进轻度认知障碍成年人及其照顾者重新参与日常有意义的活动干预
- 批准号:
10181084 - 财政年份:2020
- 资助金额:
$ 30.56万 - 项目类别:
Promoting Reengagement in Daily Meaningful Activity Intervention for Adults with Mild Cognitive Impairment and Their Caregivers
促进轻度认知障碍成年人及其照顾者重新参与日常有意义的活动干预
- 批准号:
9886931 - 财政年份:2020
- 资助金额:
$ 30.56万 - 项目类别: