Technology and Computational Core
技术与计算核心
基本信息
- 批准号:10842887
- 负责人:
- 金额:$ 33.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAlgorithmsAmino Acid SequenceBase SequenceBiologicalBiological ModelsBloodBlood specimenCell SeparationCellsCellular Indexing of Transcriptomes and Epitopes by SequencingChemistryClinicalClonal ExpansionCollaborationsComplexComputer AnalysisComputer ModelsComputing MethodologiesCoronavirusDataData SetDevelopmentDiseaseEcosystemEmulsionsEngineeringEpitopesExperimental DesignsGene Expression ProfilingGenerationsGenetic TranscriptionGenomic approachGenomicsGoalsImmuneImmune responseImmunityImmunizationImmunizeImmunological ModelsImmunologistInfectionLungMachine LearningMapsMeasurementMembrane ProteinsMethodsModelingMolecularMusNaturePathway interactionsPhenotypePopulationPublicationsRNARecording of previous eventsReproducibilityResearchResearch PersonnelResearch Project GrantsResearch SupportSARS-CoV-2 variantScientistSpecimenStandardizationStructure of parenchyma of lungSystemT-LymphocyteTechniquesTechnologyTestingTherapeuticTissue SampleTissue-Specific Gene ExpressionTissuesVaccinesVariantVirusWorkantibody and antigen bindingcell typecomputer sciencecoronavirus vaccinedata integrationdesignexperimental analysisexperimental studyfuture pandemicgenomic datahuman subjectinnovationinsightmachine learning methodmultidisciplinarynext generationnovelpathogenpreventprogramsreceptorresponsesingle-cell RNA sequencingstemsuccessuniversal coronavirus vaccinevaccine strategyworking group
项目摘要
PROJECT SUMMARY CORE B
The goal of this Program Project is to bring together a multi-disciplinary team to produce information necessary
for the design and testing of the next-generation of CoV vaccine strategies that will have the greatest possible
breadth across other CoVs. Results from all three projects will inform design of Pan-Coronavirus vaccines
against evolving SARS-CoV-2 variants and other coronaviruses to stem current and prevent future pandemics.
This will be accomplished through three dynamic and integrative projects examining various key aspects of
vaccine strategies. The Technology and Computational Core B will support, in close interaction with each of the
other investigators, all three Projects to gain maximal insight from the proposed experimental work. Based on
the need for centralized tissue and blood processing, single-cell genomics and TCR sequencing data generation,
and integrative computational analyses, we hypothesized that having a central Technology and Computational
Core, as opposed to having each project working independently, will be critical to the success of the work
proposed in this Program application and will maximize comparisons and integration of data across projects. A
centralized working group of immunologists, sequencing experts, and computational biologists is the best way
to ensure that this research will be properly carried out with maximal identification and use of appropriate
computational methods. Through Aim 1, Core B will support all three Research Projects by providing expert
advice and assistance on executing single-cell genomics and TCR sequencing experimental and analytical
strategies of blood and tissue specimens collected from human subjects and lung from immunized mice. The
standardized frameworks provided by the Core staff will add rigor and reproducibility to all experiments by
removing any variation that might otherwise arise. Core B will also provide collaborative efforts on multi-variate
modeling of immune system response and antigen/antibody binding (Aim 2). Because of the complexity of
immune responses to pathogens, our ability to gain insights and principles from the experimental datasets
generated across all three Projects will be enhanced by integrative computational analysis and modeling
embracing an integrative systems perspective. This complexity derives from diverse issues including: (a)
concomitant contributions from multiple variables together govern observed responses, rather than any single
variable being determinative by itself; (b) these multi-variate contributions are generally not independent, but
instead are typically co- or anti-correlated; and (c) these contributions often are non-linear in nature. Most
standard statistical techniques typically violate one or more of these issues, so the purpose of this Core is to
apply computational approaches arising from engineering and computer science, including “machine learning”
techniques, that can in fact accommodate any or all of them. Finally, Core B will provide additional assistance
for any complicated experimental design or analysis if/as needed. To aid with transparency, all data and analysis
frameworks supporting all findings will be made publicly available upon acceptance for publication.
项目概要核心 B
该计划项目的目标是汇集多学科团队来提供必要的信息
设计和测试下一代冠状病毒疫苗策略,该策略将具有最大可能
所有三个项目的结果将为泛冠状病毒疫苗的设计提供信息。
对抗不断演变的 SARS-CoV-2 变种和其他冠状病毒,以阻止当前和预防未来的流行病。
这将通过三个动态和综合项目来完成,这些项目审查了各个关键方面
技术和计算核心 B 将与每个疫苗策略密切互动提供支持。
其他研究人员,所有三个项目都是从拟议的实验工作中获得最大的洞察力。
集中组织和血液处理、单细胞基因组学和 TCR 测序数据生成的需求,
和综合计算分析,我们开发了一个核心技术和计算分析
核心,而不是让每个项目独立工作,对于工作的成功至关重要
本计划中提出的应用程序将最大限度地比较和整合项目之间的数据。
由免疫学家、测序专家和计算生物学家组成的集中工作组是最好的方法
确保这项研究能够在最大程度地识别和使用适当的
通过目标 1,核心 B 将通过提供专家来支持所有三个研究项目。
关于执行单细胞基因组学和 TCR 测序实验和分析的建议和帮助
从人类受试者收集的血液和组织样本以及从免疫小鼠的肺部收集的策略。
核心人员提供的标准化框架将为所有实验增加严谨性和可重复性
消除可能出现的任何变化 Core B 还将提供多变量方面的协作努力。
免疫系统反应和抗原/抗体结合的建模(目标 2)。
对病原体的免疫反应,我们从实验数据集中获得见解和原理的能力
所有三个项目产生的结果将通过综合计算分析和建模得到增强
这种复杂性源于多种问题,包括:(a)
来自多个变量的伴随贡献共同控制观察到的响应,而不是任何单个变量
(b) 这些多变量贡献通常不是独立的,但是
相反,它们通常是相关或反相关的;并且 (c) 这些贡献通常是非线性的。
标准统计技术通常会违反其中一个或多个问题,因此该核心的目的是
应用工程和计算机科学中产生的计算方法,包括“机器学习”
技术,实际上可以适应其中的任何或全部,最后,核心 B 将提供额外的帮助。
用于任何复杂的实验设计或分析(如果/根据需要)为了提高透明度,所有数据和分析。
支持所有调查结果的框架将在接受出版后公开发布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra-Chloe Villani其他文献
Alexandra-Chloe Villani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra-Chloe Villani', 18)}}的其他基金
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Programmable peptide-guided protein degradation
可编程肽引导的蛋白质降解
- 批准号:
10741655 - 财政年份:2023
- 资助金额:
$ 33.58万 - 项目类别:
Computational Methods for Designing Optimal Genomics-guided Viral Diagnostics
设计最佳基因组学指导病毒诊断的计算方法
- 批准号:
10425452 - 财政年份:2021
- 资助金额:
$ 33.58万 - 项目类别:
Software for sequencing human antibody proteins from polyclonal immune responses
用于对多克隆免疫反应中的人类抗体蛋白进行测序的软件
- 批准号:
10352420 - 财政年份:2021
- 资助金额:
$ 33.58万 - 项目类别:
Computational Methods for Designing Optimal Genomics-guided Viral Diagnostics
设计最佳基因组学指导病毒诊断的计算方法
- 批准号:
10284445 - 财政年份:2021
- 资助金额:
$ 33.58万 - 项目类别: