Development of AI/ML-ready shared repository for parametric multiphysics modeling datasets: standardization for predictive modeling of selective brain cooling after traumatic injury
开发用于参数多物理场建模数据集的 AI/ML 就绪共享存储库:创伤后选择性脑冷却预测模型的标准化
基本信息
- 批准号:10842926
- 负责人:
- 金额:$ 30.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAffectAnatomyArtificial IntelligenceBasic ScienceBehaviorBig DataBiomedical ResearchBrainBrain InjuriesCancerousCardiac Surgery proceduresCathetersCerebrumClinicalClinical ResearchCodeCollaborationsCommunitiesComplexComputer softwareDataData EngineeringData FilesData ScienceData SetDatabasesDevelopmentDevelopment PlansDevice DesignsDevicesDocumentationEarly DiagnosisElectromagneticsEngineeringExploratory/Developmental Grant for Diagnostic Cancer ImagingFundingFutureGoalsGrantHeadHealth Care CostsInformation TechnologyInjuryIntracranial PressureLearning SkillLesionLocationLong-Term EffectsMachine LearningMalignant NeoplasmsMapsMedical DeviceMedical Device DesignsMedicineModelingMonitorOutcomeOutputPatient-Focused OutcomesPatientsPerfusionPhasePhysicsPhysiologicalPower SourcesPrediction of Response to TherapyProbabilityProceduresProcessPropertyPublic HealthPythonsQuality of lifeReadabilityResearchResearch PersonnelResearch SupportResource-limited settingRunningStandardizationStudentsSystemTBI PatientsTechnologyTemperatureTestingThermal Ablation TherapyTimeTissuesTrainingTraumaTraumatic injuryTreatment ProtocolsUnited States National Institutes of HealthValidationVariantVentricularWorkaggressive breast cancerbehavior predictionblood perfusionbrain tissueclinical applicationclinically relevantcomplex datadata curationdata managementdata modelingdata standardsdeep learning modeldesignexperiencefile formatgraduate studentimprovedinnovationinsightlarge datasetslearning communitymachine learning algorithmmanufacturemicrowave electromagnetic radiationmultidisciplinarynatural hypothermianovelopen sourcepre-clinicalpredictive modelingprogramsreal time monitoringrepositoryresponsesensorshared repositorysignal processingsimulationskill acquisitionskillsstudent participationtherapy designtooltreatment optimizationtreatment planningtumorundergraduate studentusability
项目摘要
ABSTRACT
By rapidly and selectively cooling injured brain tissue, we can dramatically mitigate the long-term effect of trauma
to the head. As part of the NIH-funded R21, we are developing a stylet that could be easily inserted in commonly
used extra ventricular catheters to add cooling to intracranial pressure control. As we are developing the device,
we also realize the need for using AI/ML algorithm for optimizing design of the device and treatment planning.
Unfortunately all the commercially available software that run multiphisic numerical simulation produce data that
is not ready for processing by artificial intelligence and machine learning (AI/ML) technologies. Although AI/ML
are data-driven technologies could potentially revolutionize biomedical research, most research data is not
readily useable by AI/ML applications. In particular, there is the widespread and urgent need to make AI-ML
ready the large parametric datasets generated by multiphysics numerical simulations.
This supplemental project aim to address that issue and create a framework template for other clinical/basic
research groups to make AI/ML ready data from complex predictive multiphysics modeling to enhance
significantly their optimization and prediction capabilities. These simulations can rapidly and accurately predict
the behavior of complex biomedical devices in phantom, preclinical and clinical settings. Parametric predictive
multiphysics modeling (PPMM) allows researchers/clinicians/patients to study the effects of potential variations
in manufacturing, treatment parameters, anatomical features and physiological responses on treatment
procedures. These sensitivity studies produce significantly large datasets that could be rapidly process by AI/ML
algorithms to optimize clinical procedures. As part of a recently awarded R21 grant, we are developing a new
device that can rapidly and selectively cool the cerebral tissue of traumatic brain injury patients. Rapid selective
brain cooling could dramatically improve patient outcomes by minimizing secondary injuries.
PPMM using commercially-available software (Comsol, Ansys, Matlab, CST and others) is used both at the
design stage and during the treatment planning phase. However, the significant amount of PPMM data is not
ready for AI/ML processing since each 4D database lack of reference to the original set of parameter (i.e. tissue
properties, perfusion rate, type and location of injury…). We thus plan, within the proposed supplemental
research, to address these specific aims: 1) Develop and disseminate an AI/ML-Ready PPMM dataset 2)
Demonstrate the Usability of the AI/ML-Ready PPMM dataset in an AI/ML application (optimization of treatment
planning) 3) Demonstrate the usability of the AI/ML-ready PPMM dataset with student engagement activities.
Although the research will be focused on brain cooling PPMM, the approach will be easily expandable to other
PPMM such as cancer thermal ablation, brain temperature monitoring of hypothermic cardiac surgeries and early
detection of aggressive breast cancer. The proposed research will pave the way to the full potential of AI/ML
technologies in tandem with multiphysics simulations for the benefit of traumatic brain injury patients.
抽象的
通过快速、选择性地冷却受伤的脑组织,我们可以显着减轻创伤的长期影响
作为 NIH 资助的 R21 的一部分,我们正在开发一种可以轻松插入常见部位的管心针。
在我们开发该设备时,使用了脑室外导管来增加颅内压控制的冷却效果。
我们还意识到需要使用 AI/ML 算法来优化设备设计和治疗计划。
不幸的是,所有运行多相数值模拟的商用软件都会产生以下数据:
尽管 AI/ML 技术尚未准备好进行人工智能和机器学习 (AI/ML) 处理。
数据驱动的技术是否有可能彻底改变生物医学研究,但大多数研究数据并没有
特别是,AI-ML 的需求非常广泛且迫切。
准备好由多物理场数值模拟生成的大型参数数据集。
该补充项目旨在解决该问题并为其他临床/基础创建框架模板
研究小组从复杂的预测多物理场建模中获取人工智能/机器学习数据,以增强
这些模拟可以快速准确地预测。
复杂生物医学设备在模型、临床前和临床环境中的行为。
多物理场建模 (PPMM) 允许研究人员/临床医生/患者研究潜在变化的影响
制造、治疗参数、解剖特征和治疗的生理反应
这些敏感性研究产生了非常大的数据集,可以通过人工智能/机器学习快速处理。
作为最近授予的 R21 资助的一部分,我们正在开发一种新的算法来优化临床程序。
能够快速、选择性地冷却脑外伤患者脑组织的装置。
大脑冷却可以通过最大限度地减少伤害来显着改善患者的治疗效果。
PPMM 使用商用软件(Comsol、Ansys、Matlab、CST 等)
然而,大量的 PPMM 数据却并非如此。
为 AI/ML 处理做好准备,因为每个 4D 数据库都缺乏对原始参数集(即组织
因此,我们在提议的补充范围内进行计划。
研究,以实现这些具体目标:1) 开发和传播 AI/ML-Ready PPMM 数据集 2)
展示 AI/ML-Ready PPMM 数据集在 AI/ML 应用程序中的可用性(优化治疗)
3) 通过学生参与活动展示支持 AI/ML 的 PPMM 数据集的可用性。
尽管该研究将重点关注大脑冷却 PPMM,但该方法可以轻松扩展到其他方法
PPMM,例如癌症热消融、低温心脏手术和早期脑温度监测
拟议的研究将为 AI/ML 的全部潜力铺平道路。
技术与多物理场模拟相结合,造福于脑外伤患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paolo Francesco Maccarini其他文献
Paolo Francesco Maccarini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paolo Francesco Maccarini', 18)}}的其他基金
BREEZE: New Ventricular Direct Cooling Stylet to Mitigate Secondary Brain Injury
BREEZE:新型心室直接冷却管心针可减轻继发性脑损伤
- 批准号:
10528204 - 财政年份:2022
- 资助金额:
$ 30.34万 - 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
- 批准号:
8758405 - 财政年份:2014
- 资助金额:
$ 30.34万 - 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
- 批准号:
9100864 - 财政年份:2014
- 资助金额:
$ 30.34万 - 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
- 批准号:
8904688 - 财政年份:2014
- 资助金额:
$ 30.34万 - 项目类别:
Miniature Deep Thermal Imager for Continuous Monitoring of BAT Metabolism
用于连续监测 BAT 代谢的微型深层热成像仪
- 批准号:
8324550 - 财政年份:2011
- 资助金额:
$ 30.34万 - 项目类别:
Miniature Deep Thermal Imager for Continuous Monitoring of BAT Metabolism
用于连续监测 BAT 代谢的微型深层热成像仪
- 批准号:
8189583 - 财政年份:2011
- 资助金额:
$ 30.34万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 30.34万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 30.34万 - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 30.34万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 30.34万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 30.34万 - 项目类别: