Cloud Enabled, Rigorous, Functional Assay Calibration (CERFAC)
支持云的严格功能测定校准 (CERFAC)
基本信息
- 批准号:10827690
- 负责人:
- 金额:$ 22.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-13 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdoptedAdoptionAttentionBIK geneBRCA1 geneBenchmarkingBenignBiological AssayCalibrationClassificationClinVarClinicalCommunitiesComputer AnalysisComputer softwareDataData ScienceData SetDependenceDideoxy Chain Termination DNA SequencingDisease susceptibilityEducational workshopElementsEvaluationExpert OpinionFamilyFrustrationGenesGenetic Predisposition TestingGoalsGuidelinesHealthcareIndividualLaboratoriesLeftMassive Parallel SequencingMeasurementMethodsModernizationNational Human Genome Research InstituteOncogenesPaperPathogenicityPriceProcessPublishingResearch PersonnelResourcesSamplingScientistSusceptibility GeneSystemTechnologyTestingTimeTractionUniversitiesUtahVariantVisualizationWorkbiobankcancer predispositionclinical sequencingcomputerized toolsgenetic panel testgenetic variantgenomics cloudhigh riskimprovedlarge scale datamethod developmentmigrationsegregationsymposiumtooluser-friendlyvariant of unknown significance
项目摘要
SUMMARY
The use of gene sequencing to identify pathogenic sequence variants of high-risk disease susceptibility genes
began in the mid-late 1990s. In about 2010, the technology used for clinical sequencing tests segued from
Sanger sequencing to targeted capture massively parallel sequencing (i.e., multi-gene panel testing). This
technological shift undoubtedly increased the clinical utility of genetic predisposition testing. But there was an
unintended price: the shift to multi-gene panel testing also increased the rate at which sequence variants of
uncertain significance (VUS) were observed. In part through two older NCI R01s (R01 CA121245 and R01
CA164944), my collaborators and I made important contributions to the development of methods for evaluation
and classification of these VUS. Continuing that trajectory, the central goal of R01 CA264971 “Upgrading rigor
and efficiency of germline cancer gene variant classification for the 2020s” is, as stated in the title, to improve
both the rigor and the efficiency of classification of sequence variants observed during clinical multi-gene panel
testing of cancer predisposition genes. The study has four Aims: (1) To place related ACMG data types into
larger, logically consistent sets and then reduce or eliminate hidden dependencies between those sets; (2) To
improve the rigor of calibration for key data types through empirical measurement; (3) To refine the quantitative
Bayesian point-system for variant evaluation; and (4) To benchmark elements of sequence variant evaluation.
With migration of the framework for VUS evaluation to the Bayesian points system that we pioneered, it is clear
that a large fraction of individually rare missense substitutions initially classified as VUS can be reclassified to
either Likely Benign or Likely Pathogenic on the basis of concordant evidence from computational tool analysis
and high-throughput functional assay result. But there is a catch: both the computational tools and the
functional assays need to be calibrated rigorously, with attention to independence between the two. Flowing
from the second clause of R01 CA264971’s Aim 1 plus all of its Aim 2, the overall objective of our proposed
Supplement is a proof-of-concept exploration of the use of a specific cloud resource – Terra workspaces – to
better enable rigorous calibration of high-throughput / comprehensive functional assays for VUS evaluation by
teams of investigators around the world. The proposed Supplement has three Aims: (1) To produce a template
Terra workspace that investigators can clone to perform their own calibrations; (2) within the Terra workspace,
To implement a workflow to generate a list of candidate sequence variants for evidence calibration; and (3)
also within the Terra workspace, To develop a customizable Jupyter notebook that can generate an empirical
functional assay calibration, given a set of calibration variants and the assay results.
The proposed project should enhance the data science goal of leveraging access to modern computing to
combine several different kinds of large-scale data, resulting in acceleration of sequence variant classification.
概括
利用基因测序鉴定高危疾病易感基因的致病序列变异
始于 20 世纪 90 年代中后期,大约在 2010 年,用于临床测序测试的技术开始出现。
桑格测序到靶向捕获大规模并行测序(即多基因面板测试)。
技术转变无疑增加了遗传易感性检测的临床效用,但也存在一个问题。
意想不到的代价:向多基因面板测试的转变也增加了序列变异的速度
部分通过两个较旧的 NCI R01(R01 CA121245 和 R01)观察到不确定的显着性(VUS)。
CA164944),我和我的合作者为评估方法的开发做出了重要贡献
以及这些 VUS 的分类 延续这一轨迹,R01 CA264971 的中心目标是“提升严谨性”。
2020年代种系癌症基因变异分类的和效率”,如标题所述,是为了提高
临床多基因面板中观察到的序列变异分类的强度和效率
该研究有四个目的:(1)将相关的 ACMG 数据类型放入其中。
(2) 至
(三)细化定量
用于变异评估的贝叶斯点系统;以及(4)对序列变异评估的要素进行基准测试。
随着 VUS 评估框架迁移到我们首创的贝叶斯积分系统,很明显
最初分类为 VUS 的大部分单独罕见的错义替换可以重新分类为
根据计算工具分析的一致证据,可能良性或可能致病
和高通量功能分析结果,但有一个问题:计算工具和分析结果。
功能测定需要严格校准,并注意两者之间的独立性。
从 R01 CA264971 的目标 1 的第二个条款加上所有目标 2,我们提出的总体目标
补充是对特定云资源(Terra 工作区)的使用的概念验证探索
更好地对 VUS 评估的高通量/综合功能测定进行严格校准
拟议的补充文件有三个目标: (1) 制作一个模板。
(2) 在 Terra 工作空间内,
实施工作流程以生成用于证据校准的候选序列变体列表;以及 (3)
也在 Terra 工作区中,开发一个可定制的 Jupyter 笔记本,可以生成经验
功能测定校准,给定一组校准变体和测定结果。
拟议的项目应加强利用现代计算的数据科学目标
结合几种不同类型的大规模数据,从而加速序列变异分类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Vahram Tavtigian其他文献
Sean Vahram Tavtigian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Vahram Tavtigian', 18)}}的其他基金
Upgrading rigor and efficiency of germline cancer gene variant classification for the 2020s
提高 2020 年代种系癌症基因变异分类的严谨性和效率
- 批准号:
10392170 - 财政年份:2022
- 资助金额:
$ 22.04万 - 项目类别:
Upgrading rigor and efficiency of germline cancer gene variant classification for the 2020s
提高 2020 年代种系癌症基因变异分类的严谨性和效率
- 批准号:
10577746 - 财政年份:2022
- 资助金额:
$ 22.04万 - 项目类别:
COMMON AND RARE SEQUENCE VARIANTS IN BREAST CANCER RISK
乳腺癌风险中常见和罕见的序列变异
- 批准号:
7677919 - 财政年份:2007
- 资助金额:
$ 22.04万 - 项目类别:
COMMON AND RARE SEQUENCE VARIANTS IN BREAST CANCER RISK
乳腺癌风险中常见和罕见的序列变异
- 批准号:
7891415 - 财政年份:2007
- 资助金额:
$ 22.04万 - 项目类别:
COMMON AND RARE SEQUENCE VARIANTS IN BREAST CANCER RISK
乳腺癌风险中常见和罕见的序列变异
- 批准号:
7319704 - 财政年份:2007
- 资助金额:
$ 22.04万 - 项目类别:
COMMON AND RARE SEQUENCE VARIANTS IN BREAST CANCER RISK
乳腺癌风险中常见和罕见的序列变异
- 批准号:
7500126 - 财政年份:2007
- 资助金额:
$ 22.04万 - 项目类别:
COMMON AND RARE SEQUENCE VARIANTS IN BREAST CANCER RISK
乳腺癌风险中常见和罕见的序列变异
- 批准号:
8146169 - 财政年份:2007
- 资助金额:
$ 22.04万 - 项目类别:
相似国自然基金
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
睡眠剥夺通过上调BMAL1/IL-17轴促进三级淋巴结构形成加重哮喘的研究
- 批准号:82300039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A6通过调控ZNF750组蛋白甲基化促进糖尿病角质形成细胞分化障碍的机制研究
- 批准号:82302802
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤相关成纤维细胞通过CCL5/CCR5轴促进神经内分泌前列腺癌顺铂耐药的机制研究
- 批准号:82373358
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
鼻腔共生表皮葡萄球菌通过抗菌肽-moDC-CCL17通路抑制过敏性鼻炎的分子机制
- 批准号:82302595
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别:
Adapting Enhanced Recovery Programs (ERPs) through Health Literacy to Eliminate Surgical Disparities
通过健康素养调整加速康复计划(ERP)以消除手术差异
- 批准号:
10658153 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别:
Enhanced Cervical Cancer Screening Adoption and Treatment Linkage for HIV positive Women in Kenya (eCASCADE-Kenya)
加强肯尼亚艾滋病毒阳性女性的宫颈癌筛查采用和治疗联系 (eCASCADE-Kenya)
- 批准号:
10738134 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别: