The Alara Imaging Gateway: Linking Electronic Health Records and Radiology Imaging Exams to Report on National Quality Measures to Reduce Cancer Risk from Computed Tomography (Alara Imaging Gateway)
Alara 成像网关:将电子健康记录和放射成像检查联系起来,报告国家降低计算机断层扫描癌症风险的质量措施 (Alara Imaging Gateway)
基本信息
- 批准号:10820279
- 负责人:
- 金额:$ 131.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AdoptionArchitectureAutomobile DrivingAwardBenchmarkingCaliforniaCaringCategoriesCertificationClinicalClinical DataClinical/RadiologicCollaborationsCommunicationComputer Vision SystemsComputer softwareDataDevelopmentDiagnosisDigital Imaging and Communications in MedicineDoseElectronic Health RecordElectronicsEquityFast Healthcare Interoperability ResourcesFeedbackFundingGraphHealthHealth Insurance Portability and Accountability ActHealth StatusHealthcare SystemsHospitalsImageInformaticsInformation SystemsInformation TechnologyIngestionInpatientsIntellectual PropertyInterviewLinkMachine LearningMalignant NeoplasmsMeasuresMedical ImagingMinorityModernizationOutpatientsPatient imagingPatientsPerformancePersonsPhysiciansPicture Archiving and Communication SystemRadiationRadiation Dose UnitRadiology Information SystemsRadiology SpecialtyRandomized, Controlled TrialsRecommendationReport (document)ReportingResourcesRiskSan FranciscoSecureServicesSiteSourceSpecific qualifier valueStandardizationSurveysSystemTechniquesTechnologyTestingTimeU-Series Cooperative AgreementsUnited States Centers for Medicare and Medicaid ServicesUniversitiesVisualizationWorkX-Ray Computed Tomographycancer diagnosiscancer riskcomparativedata accessdata managementdata visualizationelectronic health datafinancial incentivefirewallhealth disparityimaging facilitiesimaging softwarenovelpatient safetypaymentpeerpreventprogramsradiological imagingradiologistservice organizationsoftware developmentstructured datasuccess
项目摘要
Abstract
Alara Imaging, Inc. (Alara) is seeking funding to support the development of robust, IP-protected, HIPAA-
compliant commercial quality software to calculate and report on quality measures that will be reported for
every radiologist and hospital group in the nation. Further, Alara is seeking funding to develop enhanced
feedback that leverages machine learning, data visualization, and benchmarking to guide physicians and
hospitals on safe approaches for lowering their CT radiation doses. Once implemented at scale through the
support of this award, Alara’s software has the potential to reduce the cancers that result from CT by up to
30%, preventing as many as 10,000 cancers annually.
The use of CT has grown substantially over the last 2 decades with 90 million CT exams performed annually in
the U.S. A major quality gap exists in the performance of CT as the radiation doses used for these exams are
higher than needed for diagnosis and in the range where they increase a person's risk of developing cancer; it
is estimated that CT use causes 36,000 cancers annually in the U.S.1 The inconsistency in how CT exams are
performed represents a modifiable health risk as radiation doses can be reduced through audit and feedback,
as shown in a UCSF led, NCI funded, trial.2
In 2019, UCSF was awarded a cooperative agreement from CMS to develop CT radiation dose and image
quality measures for use in the agency’s pay-for-performance programs. The intent of this award was to
motivate radiologists and hospitals and to reduce unnecessarily high radiation doses through financial
incentives. UCSF created the approach to judge each CT by combining clinical and radiology data located in
disparate health data systems including the Electronic Health Record, Radiology Information System, and
Picture Archiving and Communication System. These data systems communicate poorly, and properly
ingesting and normalizing these data in real time was a technological challenge. Additionally, as a stipulation of
the funding, CMS required UCSF to develop these measures as electronic clinical quality measures (eCQM);
however, the resources required to develop and implement an eCQM at the national level were beyond what
was available to Dr. Smith-Bindman from CMS. As a result, Dr. Smith-Bindman, in collaboration with UCSF as
a minority equity stakeholder, worked with radiology informatics experts to create a commercial entity, Alara, to
develop the eCQMs and software for national implementation. The measures are now being considered for
use in CMS quality payment programs, and Alara is now seeking funding to implement the measures at scale.
In addition to the CMS measure functionality, the software’s architecture will represent a meaningful
technological advancement and creates value beyond measure reporting by linking and providing access to
combined clinical and radiology data connected to the cloud. Information technology companies that are
driving care forward in radiology using novel machine learning and computer vision techniques need access to
the same linked data so that they can leverage modern technology applications. Alara’s software, “The
Gateway”, solves this integration and data access challenge, and Alara will sell access to the Gateway to
technology companies, opening possibilities for technology companies to develop additional solutions that take
advantage of the linked and structured data.
抽象的
Alara Imaging, Inc. (Alara) 正在寻求资金来支持开发强大的、受知识产权保护的、HIPAA-
合规的商业质量软件,用于计算和报告将报告的质量措施
此外,Alara 正在寻求资金来开发增强型技术。
利用机器学习、数据可视化和基准测试来指导医生和患者的反馈
医院通过安全方法降低 CT 辐射剂量。
在该奖项的支持下,Alara 的软件有可能将 CT 导致的癌症减少多达
30%,每年预防多达 10,000 例癌症。
过去 20 年来,CT 的使用大幅增长,每年进行 9000 万次 CT 检查。
美国 CT 性能存在重大质量差距,因为这些检查使用的辐射剂量
高于诊断所需的水平,并且在增加一个人患癌症的风险的范围内;
据估计,在美国,CT 的使用每年导致 36,000 例癌症。1 CT 检查方式的不一致
所执行的操作代表了可改变的健康风险,因为可以通过审核和反馈来减少辐射剂量,
如 UCSF 主导、NCI 资助的试验所示。2
2019年,UCSF获得CMS合作协议,开发CT辐射剂量和影像
该奖项的目的是用于该机构按绩效付费计划的质量衡量标准。
激励放射科医生和医院,并通过财政资金减少不必要的高辐射剂量
UCSF 创建了一种通过结合位于的临床和放射学数据来判断每个 CT 的方法。
不同的健康数据系统,包括电子健康记录、放射信息系统和
图片存档和通信系统。这些数据系统通信不良且正常。
此外,根据规定,实时摄取和标准化这些数据也是一项技术挑战。
在资金方面,CMS 要求 UCSF 将这些措施制定为电子临床质量措施 (eCQM);
然而,在国家层面制定和实施 eCQM 所需的资源超出了
CMS 的 Smith-Bindman 博士因此可以与 UCSF 合作。
少数股东与放射信息学专家合作创建了一个商业实体 Alara,
目前正在考虑开发用于国家实施的 eCQM 和软件。
用于 CMS 质量支付计划,Alara 目前正在寻求资金来大规模实施这些措施。
除了 CMS 测量功能之外,该软件的架构还将代表一个有意义的
技术进步并通过链接和提供访问来创造超出衡量报告的价值
将临床和放射学数据连接到云的信息技术公司。
使用新颖的机器学习和计算机视觉技术推动放射学护理向前发展需要访问
相同的链接数据,以便他们可以利用现代技术应用程序“Alara”。
Gateway”解决了这一集成和数据访问挑战,Alara 将向
技术公司,为技术公司开发更多解决方案提供了可能性
链接和结构化数据的优势。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Mazonson其他文献
Nathan Mazonson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
- 批准号:
10568586 - 财政年份:2023
- 资助金额:
$ 131.63万 - 项目类别:
Center on Probes for Molecular Mechanotechnology
分子机械技术探针中心
- 批准号:
10629919 - 财政年份:2023
- 资助金额:
$ 131.63万 - 项目类别:
Microfluidics Platform for Spatial Multi-Omics Analysis of Tissue at Single Cell Resolution
用于单细胞分辨率组织空间多组学分析的微流控平台
- 批准号:
10483029 - 财政年份:2022
- 资助金额:
$ 131.63万 - 项目类别:
Integrated analysis of multi-omic QTLs at single cell resolution
单细胞分辨率多组学 QTL 的综合分析
- 批准号:
10446407 - 财政年份:2022
- 资助金额:
$ 131.63万 - 项目类别:
Integrated analysis of multi-omic QTLs at single cell resolution
单细胞分辨率多组学 QTL 的综合分析
- 批准号:
10705050 - 财政年份:2022
- 资助金额:
$ 131.63万 - 项目类别: