SCH: Quantifying and mitigating demographic biases of machine learning in real world radiology
SCH:量化和减轻现实世界放射学中机器学习的人口统计偏差
基本信息
- 批准号:10818941
- 负责人:
- 金额:$ 31.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAlgorithmsAnatomyAreaArtificial IntelligenceBindingBreast Cancer DetectionCertificationChest imagingClinical/RadiologicComplementComplexDataData SetDevelopmentDiagnosisDiagnostic ImagingDiseaseDisparityEngineeringEnsureEthicsEvaluationExplosionFutureGenerationsHealthHealth PolicyImageIndividualInstructionKnowledgeLocationMachine LearningMalignant neoplasm of lungMeasuresMedical ImagingMedical centerMedicineMethodologyMethodsModernizationMonitorOutcomePerformancePopulationProceduresProxyPublic Health Applications ResearchRaceRadiology SpecialtyRecommendationResearchSamplingScienceScreening for cancerScreening procedureSeriesSystemTechnologyThoracic RadiographyTimeTrainingUnderrepresented PopulationsValidationaccess disparitiesalgorithmic biasartificial neural networkbiological sexbreast imagingcancer diagnosiscancer imagingclinically relevantdeep neural networkdemographicsdiagnostic accuracydiagnostic tooldisease classificationdisparity reductionhealth disparityhigh riskimaging modalityimprovedlung cancer screeningmachine learning algorithmmachine learning methodmachine learning modelmalignant breast neoplasmnovelpopulation basedprediction algorithmpredictive modelingpreventpublic health relevancereal world applicationscreeningscreening programtool
项目摘要
PROJECT SUMMARY (See instructions):
The application of modern machine learning algorithms in radiology continues to grow, as these tools
represent potential huge improvements in efficiency, accessibility and accuracy of diagnostic and
screening tools. At the same time, these increasingly complex machine learning models can have biased
predictions against individuals of under-represented demographic groups, potentially perpetuating
pre-existing health disparities. Such fairness concerns are particularly important in public health
applications that focus on large scale population-based screening, as in cancer screening for breast and
lung cancer. In these settings, it is paramount to understand how often machine learning screening
algorithms can be unfair and biased, and how to mitigate these disparities. This proposal will develop
tools to quantify, correct, and analyze the biases of predictive algorithms in relation to different
demographic groups in real world settings. In particular, we will develop analysis and algorithms to
quantify the violation of fairness by a machine learning model in situations where information about the
sensitive attribute itself (such as biological sex, race or age) are not directly observable, and we will
provide algorithms that correct for their worst-case fairness violations. We will analyze our tools under
distribution shifts, whereby differences in populations exist, as is common in large scale cancer screening
programs. This project will also perform inference on the training samples and features most highly
associated with fairness violations, thereby providing guidance on the development of solutions to prevent
biased algorithms in the future. Our tools will be validated on a variety of large real-world radiology
datasets spanning multiple imaging modalities, including general chest X-ray datasets that include lung
cancer diagnoses (CheXpert and MIMIC-CXR), as well as the Emory Breast Cancer Imaging Dataset
(EMBED) and the National Lung Cancer Screening Trial, evaluating and correcting disparities for
predictive algorithms with respect to biological sex (where appropriate), race, and age. The results of this
project will establish critical knowledge about the propensity of machine learning models for medical
imaging diagnosis and cancer screening to be unfair and biased, as well as foundational tools to quantify
and mitigate these biases in these potentially game-changing technologies.
项目摘要(参见说明):
现代机器学习算法在放射学中的应用不断增长,因为这些工具
代表了诊断和诊断的效率、可及性和准确性方面的潜在巨大改进
筛选工具。与此同时,这些日益复杂的机器学习模型可能会产生偏差
针对代表性不足的人口群体的个人的预测,可能会永久存在
先前存在的健康差异。这种公平问题对于公共卫生尤其重要
专注于大规模人群筛查的应用,例如乳腺癌和癌症筛查
肺癌。在这些情况下,了解机器学习筛查的频率至关重要
算法可能是不公平和有偏见的,以及如何减轻这些差异。该提案将制定
量化、纠正和分析与不同预测算法相关的偏差的工具
现实世界环境中的人口群体。特别是,我们将开发分析和算法
在有关信息的情况下,量化机器学习模型对公平的侵犯
敏感属性本身(例如生物性别、种族或年龄)是无法直接观察到的,我们将
提供纠正最坏情况下的公平违规行为的算法。我们将在下面分析我们的工具
分布变化,导致人群存在差异,这在大规模癌症筛查中很常见
程序。该项目还将对训练样本和最重要的特征进行推理
与违反公平行为相关联,从而为制定解决方案提供指导,以防止
未来有偏见的算法。我们的工具将在各种大型现实世界放射学中得到验证
涵盖多种成像模式的数据集,包括包含肺部的一般胸部 X 射线数据集
癌症诊断(CheXpert 和 MIMIC-CXR)以及埃默里乳腺癌成像数据集
(EMBED)和国家肺癌筛查试验,评估和纠正差异
关于生物性别(如果适用)、种族和年龄的预测算法。这样做的结果
该项目将建立有关机器学习模型在医疗领域的倾向的关键知识
影像诊断和癌症筛查是不公平和有偏见的,以及量化的基础工具
并减轻这些可能改变游戏规则的技术中的这些偏见。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEREMIAS SULAM其他文献
JEREMIAS SULAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Incorporating residential histories into assessment of cancer risk in a predominantly low-income and racially diverse population
将居住史纳入以低收入和种族多元化为主的人群的癌症风险评估中
- 批准号:
10735164 - 财政年份:2023
- 资助金额:
$ 31.85万 - 项目类别:
Identifying Risk Factors for Poor Glycemic Control among Emergency Department Patients and Improving Linkage to Outpatient Care
确定急诊科患者血糖控制不佳的风险因素并改善与门诊护理的联系
- 批准号:
10734304 - 财政年份:2023
- 资助金额:
$ 31.85万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 31.85万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 31.85万 - 项目类别:
A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
- 批准号:
10681965 - 财政年份:2023
- 资助金额:
$ 31.85万 - 项目类别: