SCH: Novel and Interpretable Statistical Learning for Brain Images in AD/ADRDs
SCH:针对 AD/ADRD 大脑图像的新颖且可解释的统计学习
基本信息
- 批准号:10816764
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAddressAdoptedAgingAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease related dementiaBiological MarkersBrainBrain imagingBrain regionClinicalComputer softwareDataDiagnosisDiseaseEffectivenessEnsureFoundationsFour-dimensionalFriendsFunctional ImagingGeneticGenetic MarkersGoalsHealthHealthcareHeterogeneityImageImaging technologyInstitutionMagnetic Resonance ImagingMeasuresMedicalMedical ResearchMethodsModelingModernizationMultimodal ImagingOutcomePerformancePhenotypePositron-Emission TomographyPrognosisPublic HealthResearchResearch PersonnelResolutionSamplingScienceShapesSignal TransductionStatistical MethodsStatistical ModelsStudy SubjectTechnologyTestingThree-Dimensional ImagingUncertaintyVariantX-Ray Computed Tomographybiomarker developmentbiomarker discoverybiomedical imagingcomputational platformdiagnostic accuracydisease diagnosisdisease prognosisflexibilitygenome wide association studyhigh dimensionalityimage processingimaging biomarkerimaging studyimprovedinnovationinsightinterestlearning strategynovelparallel computerrapid growthsoundstatistical learningstructural imagingtooltwo-dimensional
项目摘要
Biomedical imaging technology has undergone rapid advancements over the last several decades,
producing large volumes of multimodal imaging data that hold great promise as biomarkers for agingrelated diseases such as Alzheimer’s. Current imaging biomarkers are primarily based on specific
extracted one-dimensional measures that may not fully capture the richness of imaging data. Utilizing
three-dimensional (3D) or higher imaging information directly may facilitate the identification of more
effective disease biomarkers to inform diagnosis, prognosis, and treatment. However, this also brings
significant challenges, such as analyzing ir-regularly shaped 3D objects, managing high-dimensional and
high-resolution data, addressing noisiness and complexity, quantifying uncertainty, and ensuring the
interpretability of the results. Our multi-institutional, inter-disciplinary team of investigators will develop
efficient statistical learning approaches and scalable computing tools to extract and assess biomarkers
from large-scale brain imaging studies. We will also incorporate genetic and clinical information in
constructing the biomarkers. Specifically, our proposal comprises five interrelated research aims carried
out by investigators with complementary expertise from three institutions. Aim 1 focuses on developing an
interpretable model for genome-wide association studies (GWAS) with brain imaging pheno-types and
non-visual contextual information. Aim 2 targets to develop novel nonparametric distributed learning
methods for analyzing 3D brain imaging data using an innovative domain decomposition strategy to
improve computing performance. Aim 3 quantifies the bias effect in image processing and develops
inference methods to reveal the underlying signal from brain imaging data and identify significant brain
regions among different diagnosis groups. Aims 4-5 aim to develop statistical methods for obtaining and
evaluating imaging-adjusted biomarkers for disease diagnosis and prognosis and assess the incremental
value of imaging information over genetic biomarkers on diagnosis and prediction accuracy. The efficacy
of the methods developed in this pro-posal will be tested by data collected from studies in Alzheimer’s
disease and brain sciences. The proposed research will address critical gaps in current biomarker
development and analysis by utilizing advanced sta-tistical learning approaches and computing tools to
directly utilize the 3D or higher imaging information. This innovative approach holds the potential to provide
more effective disease biomarkers, leading to improved accuracy in diagnosis, prognosis, and treatment
for Alzheimer’s disease and related dementias.
生物医学成像技术在过去几十年中取得了快速发展,
产生大量多模态成像数据,这些数据有望成为阿尔茨海默氏症等衰老相关疾病的生物标志物。
提取的一维测量可能无法完全捕获丰富的成像数据。
三维(3D)或更高的成像信息直接可以促进更多的识别
有效的疾病生物标志物可以为诊断、预后和治疗提供信息。然而,这也带来了影响。
重大挑战,例如分析不规则形状的 3D 对象、管理高维和
高分辨率数据,解决噪音和复杂性,量化不确定性,并确保
我们的多机构、跨学科研究团队将开发结果的可解释性。
用于提取和评估生物标志物的高效统计学习方法和可扩展计算工具
我们还将把遗传和临床信息纳入大规模脑成像研究中。
具体来说,我们的建议包括五个相互关联的研究目标。
由来自三个机构具有互补专业知识的研究人员制定,目标 1 侧重于开发一个
具有脑成像表型的全基因组关联研究(GWAS)的可解释模型和
目标 2 的目标是开发新颖的非参数分布式学习。
使用创新的域分解策略分析 3D 脑成像数据的方法
目标3量化图像处理中的偏差效应并进行开发。
推理方法揭示大脑成像数据中的潜在信号并识别重要的大脑
目标 4-5 旨在开发统计方法来获取和
评估用于疾病诊断和预后的成像调整生物标志物,并评估增量
成像信息相对于遗传生物标志物在诊断和预测准确性方面的价值。
本提案中开发的方法将通过阿尔茨海默氏症研究收集的数据进行测试
拟议的研究将解决当前生物标志物的关键差距。
利用先进的统计学习方法和计算工具进行开发和分析
直接利用 3D 或更高的成像信息这种创新方法具有提供的潜力。
更有效的疾病生物标志物,从而提高诊断、预后和治疗的准确性
用于阿尔茨海默病和相关痴呆症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAO SONG其他文献
XIAO SONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
- 批准号:62075189
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
- 批准号:61906133
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
- 批准号:81871437
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
- 批准号:31800305
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
- 批准号:81601462
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A computational approach combining 4D Flow and CFD for improved determination of cerebral hemodynamics
结合 4D Flow 和 CFD 的计算方法可改进脑血流动力学测定
- 批准号:
10581283 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
- 批准号:
10742476 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: