PBPK Modeling & Simulation to Predict Transporter-Mediated Drug Secretion into Human Breast Milk
PBPK 建模
基本信息
- 批准号:10706040
- 负责人:
- 金额:$ 65.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:ABCG2 geneAddressBreast Epithelial CellsBreast FeedingBreastfed infantCYP3A4 geneCell SeparationCell membraneCharacteristicsCimetidineClinicalClinical ResearchConfidence IntervalsConsumptionDataDiffusionDoseDrug ExposureDrug KineticsDrug toxicityDrug usageEnzymesExcretory functionExposure toGoalsHealthHumanHuman MilkIn VitroIndividualInfantKnowledgeLactationMammary glandMaternal HealthMediatingMethodsMidazolamMilkModelingMusOralPharmaceutical PreparationsPharmacologyPhysiologicalPlasmaPlayPopulationPostpartum PeriodPregnancyPropertyProteinsProteomicsRegimenRiboflavinRiskRisk AssessmentRoleSystemTopotecanToxic effectTransfectionTranslatingVesicleWild Type MouseWomanXenobioticsabsorptiondesignenzyme activityfallsin silicoin vivoinfant outcomeinnovationinterestmammarymilk secretionmodels and simulationneonatal healthpharmacokinetic modelphysiologically based pharmacokineticspredictive modelingrosuvastatinstatistics
项目摘要
SUMMARY
Breastfeeding has multiple beneficial effects on maternal and neonatal health; however, the statistics indicate
that up to 96% of lactating women in the US take one or more medications while breastfeeding. Medications
consumed by lactating women may be transferred into breast milk to a significant extent, resulting in
unintentional infant exposure of medications and in some cases adverse health outcomes for the infants.
Quantifying drug transfer into human breast milk is important for rational risk assessment balancing the toxicity
risk of drug exposure to infants and the benefits of breastfeeding. However, clinical pharmacokinetic (PK) studies
in the population of lactating women are challenging and logistically not possible for every drug taken by
lactating women, necessitating the use of prediction methods to address this issue. One historical approach is
the prediction of drug concentrations (or drug AUC) in breast milk based on maternal plasma concentration (or
AUC) and the milk-to-plasma (M/P) concentration or AUC ratio. The M/P ratio itself can be predicted using both
physicochemical characteristics of drugs and physiological parameters of breast milk. While this approach may
predict the M/P ratios of drugs that enter the milk predominantly by passive diffusion, no methods are currently
available to accurately predict milk secretion of drugs via transport mechanisms. Nonetheless, milk secretions of
many drugs, xenobiotics and endogenous substances are known to be mediated by transporters expressed in
mammary epithelial cells (MECs). In this application, we propose a systems pharmacology approach to predict
transporter-mediated milk secretion of drugs. Our hypothesis is that the transporter-mediated drug PK in
human breast milk can be predicted using in vitro experimental data combined with Physiologically Based
Pharmacokinetic (PBPK) modeling and simulation (M&S). Specifically, we propose an innovative approach
which utilizes human MECs and transporter-transfected cells or plasma membrane vesicles expressing
individual transporters of interest (i.e. OCT1, BCRP). Using quantitative targeted proteomics, the human
MECs will allow us to determine the protein abundance of these transporters in the mammary gland. The
transporter-transfected cell or plasma membrane vesicle studies will allow us to determine the in vitro intrinsic
transport clearance of a drug by a single transporter. Then, the in vitro intrinsic transporter-mediated clearances
will be extrapolated to in vivo in the mammary gland for PBPK M&S. PBPK model predictions will be verified
using the drug PK data in human breast milk obtained from a clinical study conducted with a transporter
substrate. Combined, these data will allow us to predict transporter-mediated drug PK in the milk of lactating
women. These studies will address a critical gap in our understanding of drug PK in human breast milk
during lactation. Since our approach can be applied to other drugs that are substrates of any transporters of
interest, its significance goes well beyond the drug and transporters investigated here.
概括
母乳喂养对孕产妇和新生儿健康具有多种有益影响;然而,统计数据表明
美国高达 96% 的哺乳期妇女在母乳喂养期间服用一种或多种药物。药物
哺乳期妇女食用的食物可能会在很大程度上转移到母乳中,从而导致
婴儿无意接触药物,在某些情况下会对婴儿产生不良健康后果。
定量药物转移到人乳中对于平衡毒性的合理风险评估很重要
婴儿接触药物的风险以及母乳喂养的好处。然而,临床药代动力学(PK)研究
哺乳期妇女服用的每一种药物都具有挑战性,而且在后勤上也是不可能的
哺乳期妇女,需要使用预测方法来解决这个问题。一种历史方法是
根据母体血浆浓度(或
AUC)和乳汁与血浆(M/P)浓度或 AUC 比率。 M/P 比率本身可以使用两者来预测
药物的理化特性和母乳的生理参数。虽然这种方法可能
预测主要通过被动扩散进入乳汁的药物的 M/P 比率,目前还没有方法
可通过转运机制准确预测药物的乳汁分泌。尽管如此,乳汁分泌
已知许多药物、外源性物质和内源性物质是由表达的转运蛋白介导的
乳腺上皮细胞(MEC)。在此应用中,我们提出了一种系统药理学方法来预测
转运蛋白介导的乳汁分泌药物。我们的假设是转运蛋白介导的药物 PK
可以利用体外实验数据结合生理学来预测人类母乳
药代动力学 (PBPK) 建模和模拟 (M&S)。具体来说,我们提出了一种创新方法
它利用人类 MEC 和转运蛋白转染的细胞或质膜囊泡表达
感兴趣的单个转运蛋白(即 OCT1、BCRP)。使用定量靶向蛋白质组学,人类
MEC 将使我们能够确定乳腺中这些转运蛋白的蛋白质丰度。这
转运蛋白转染的细胞或质膜囊泡研究将使我们能够确定体外内在
药物通过单一转运蛋白的转运清除。然后,体外内在转运蛋白介导的清除
将外推至乳腺体内的 PBPK M&S。 PBPK模型预测将得到验证
使用通过转运蛋白进行的临床研究获得的人母乳中的药物 PK 数据
基材。综合起来,这些数据将使我们能够预测哺乳期乳汁中转运蛋白介导的药物 PK
女性。这些研究将解决我们对母乳中药物 PK 理解的一个关键差距
哺乳期间。由于我们的方法可以应用于作为任何转运蛋白底物的其他药物
兴趣,其意义远远超出了这里研究的药物和转运蛋白。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARY F HEBERT其他文献
MARY F HEBERT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARY F HEBERT', 18)}}的其他基金
Effects of Retinoids on CYP2D6 Activity and Variability in Special Populations
类维生素A对特殊人群中CYP2D6活性和变异性的影响
- 批准号:
9367390 - 财政年份:2017
- 资助金额:
$ 65.73万 - 项目类别:
Effects of Retinoids on CYP2D6 Activity and Variability in Special Populations
类维生素A对特殊人群中CYP2D6活性和变异性的影响
- 批准号:
9904729 - 财政年份:2017
- 资助金额:
$ 65.73万 - 项目类别:
EFFECTS OF PREGNANCY ON THE PHARMACOKINETICS AND PHARMACODYNAMICS OF GLYBURIDE
妊娠对格列本脲药代动力学和药效学的影响
- 批准号:
7603514 - 财政年份:2007
- 资助金额:
$ 65.73万 - 项目类别:
CYP3A5 AND CYCLOSPORINE/TACROLIMUS RENAL CLEARANCE
CYP3A5 和环孢素/他克莫司肾清除率
- 批准号:
7603506 - 财政年份:2007
- 资助金额:
$ 65.73万 - 项目类别:
UW Obstetric-Fetal Pharmacology Research Unit
华盛顿大学产胎儿药理学研究单位
- 批准号:
7354428 - 财政年份:2006
- 资助金额:
$ 65.73万 - 项目类别:
PHARMACOKINETICS OF AMOXICILLIN DURING PREGNANCY AND POSTPARTUM
阿莫西林在妊娠期和产后的药代动力学
- 批准号:
7379324 - 财政年份:2006
- 资助金额:
$ 65.73万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目