An Improved Robotic Electrophysiology Platform for Arrhythmia Ablation

一种改进的心律失常消融机器人电生理学平台

基本信息

  • 批准号:
    10704224
  • 负责人:
  • 金额:
    $ 98.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Arrhythmias result from disorganized electrical signals within the heart leading to irregular contractions and are a leading cause of death in the US. Ventricular tachycardia and fibrillation are the most serious arrhythmias resulting in 300k annual US deaths, followed by 130k US deaths due to atrial fibrillation (AF). With a prevalence of 6M in the US, AF is the most common arrhythmia, resulting in 750k annual US hospitalizations. AF-associated medical costs will exceed $50B by 2035. AF therapies first rely on pharmaceuticals to prevent blood clots and to restore rhythm. If these approaches fail, electrophysiology (EP) procedures are performed which pass electrical currents (or coolants) through the catheter’s tip to destroy tissues disrupting proper electrical signals. However, manual catheters rely on complex tension-wire designs operated from a meter away which makes effective catheter control difficult, leading to injury and AF recurrence. Robotic platforms have struggled to improve catheter control for decades. Most robotic systems manipulate standard manual catheters; however, learning curves remain high and catheter tip control is unimproved. Magnet-based systems that use magnetic catheters improve control; however, the systems are impractically large, difficult to use, and require a custom angiography suite. Because all existing robotic solutions remain prohibitively expensive, such systems are found only in a limited number of high-volume centers despite that more than 80% of all hospitals providing ablation are lower-volume centers. What is needed is an affordable and workflow-friendly robotic technology that improves catheter control and enables expertise within high- volume EP centers to be remotely shared with lower-volume centers for training and procedural support. UNandUP’s MAP-EP (Magnetic Assistive Platform for EP) system controls novel linkage-based magnetic catheters using a magnet mass 50X smaller than previously possible. As a result, the MAP-EP system can be installed into existing digital angiography suites without the need for a new c-arm or room construction. Because energy is not expended fighting catheter restoring forces, low magnetic fields achieve stable, accurate, and precise heart wall contact. The technology complements standard EP workflows, is affordable for low-volume EP centers, and provides telerobotic access to expertise within high-volume centers. In the Phase I effort, a prototype magnet workstation was constructed, novel magnetic materials were developed to manufacture smaller and more complex magnets than previously possible, and prototype catheters were successfully built and assessed using known heart phantoms. I-Corps and TABA participation were completed, and FDA pre-submission meetings were held in support of mapping [510(k)], ablation (PMA), and Early Feasibility Studies. For the proposed effort, UNandUP will develop preclinical versions of its system. Efficacy studies will be completed using known beating heart phantoms. Biocompatibility testing and large- animal safety and feasibility studies will be conducted following published methods.
心律失常是由心脏内电信号紊乱导致不规则收缩引起的, 室性心动过速和颤动是美国最严重的心律失常的主要原因。 导致美国每年有 30 万人死亡,其次是 13 万人因心房颤动 (AF) 死亡。 在美国,房颤的患病率为 6M,房颤是最常见的心律失常,导致美国每年有 75 万人住院。 到 2035 年,与 AF 相关的医疗费用将超过 $50B。AF 疗法首先依靠药物来预防 如果这些方法失败,则进行电生理学 (EP) 程序。 使电流(或冷却剂)通过导管尖端来破坏组织,破坏正常的组织 然而,手动导管依赖于通过仪表操作的复杂张力线设计。 这使得有效的导管控制变得困难,导致损伤和房颤复发。 几十年来,机器人平台一直在努力改善大多数机器人系统的操纵控制。 标准手动导管;然而,学习曲线仍然很高并且导管尖端控制没有得到改善。 使用磁性导管的基于磁铁的系统改善了控制,但是该系统并不实用。 体积大、难以使用,并且需要定制血管造影套件,因为所有现有的机器人解决方案仍然存在。 尽管价格昂贵,但此类系统仅在有限数量的高容量中心中找到 超过 80% 的提供消融治疗的医院都是规模较小的中心,我们需要的是负担得起的中心。 和工作流程友好的机器人技术,可改善导管控制并实现高水平的专业知识 大量 EP 中心将与少量中心远程共享,以提供培训和程序支持。 UNandUP 的 MAP-EP(EP 磁力辅助平台)系统控制新型基于联动的磁力 MAP-EP 系统使用比以前小 50 倍的磁体质量。 安装到现有的数字血管造影套件中,无需新的 C 形臂或房间建设。 由于能量不会消耗在对抗导管恢复力上,因此低磁场可实现稳定、 该技术补充了标准 EP 工作流程,价格实惠。 适用于低容量的 EP 中心,并提供远程机器人访问大容量中心内的专业知识。 在第一阶段的工作中,建造了一个原型磁体工作站,并开发了新型磁性材料 开发用于制造比以前更小、更复杂的磁体,以及原型 使用已知的心脏模型和 TABA 参与成功构建和评估了导管。 已完成,FDA 举行了提交前会议,以支持绘图 [510(k)]、消融 (PMA)、 对于拟议的工作,UNandUP 将开发其系统的临床前版本。 功效研究将使用已知的跳动心脏模型来完成。 动物安全和可行性研究将按照已公布的方法进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francis Milton Creighton其他文献

Francis Milton Creighton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francis Milton Creighton', 18)}}的其他基金

Low-Dose Magneto-Thrombolysis to Expand Stroke Care
低剂量磁溶栓扩大中风治疗范围
  • 批准号:
    10693650
  • 财政年份:
    2023
  • 资助金额:
    $ 98.26万
  • 项目类别:
Flow Acceleration for Stroke Thrombolysis (FAST) System
中风溶栓 (FAST) 系统的流量加速
  • 批准号:
    10464028
  • 财政年份:
    2022
  • 资助金额:
    $ 98.26万
  • 项目类别:
Flow Acceleration for Stroke Thrombolysis (FAST) System
中风溶栓 (FAST) 系统的流量加速
  • 批准号:
    10253434
  • 财政年份:
    2021
  • 资助金额:
    $ 98.26万
  • 项目类别:
Flow Acceleration for Stroke Thrombolysis (FAST) System
中风溶栓 (FAST) 系统的流量加速
  • 批准号:
    10572098
  • 财政年份:
    2021
  • 资助金额:
    $ 98.26万
  • 项目类别:
Flow Acceleration for Stroke Thrombolysis (FAST) System
中风溶栓 (FAST) 系统的流量加速
  • 批准号:
    10451688
  • 财政年份:
    2021
  • 资助金额:
    $ 98.26万
  • 项目类别:
ICorps Administrative Supplement for A Remotely-Operated Robotic Endovascular Platform to Improve Thrombectomy Access
ICorps 针对远程操作机器人血管内平台的行政补充,以改善血栓切除术的可及性
  • 批准号:
    10045638
  • 财政年份:
    2020
  • 资助金额:
    $ 98.26万
  • 项目类别:
An Improved Intra-Arterial Delivery Platform for Glioblastoma Multiforme
改进的多形性胶质母细胞瘤动脉内输送平台
  • 批准号:
    9904911
  • 财政年份:
    2020
  • 资助金额:
    $ 98.26万
  • 项目类别:
An Improved Robotic Electrophysiology Platform for Arrhythmia Ablation
一种改进的心律失常消融机器人电生理学平台
  • 批准号:
    10481922
  • 财政年份:
    2019
  • 资助金额:
    $ 98.26万
  • 项目类别:
Acute Ischemic Stroke Neuroprotection Platform to overcome Care Disparities for Rural Populations
急性缺血性中风神经保护平台可克服农村人口的护理差异
  • 批准号:
    9794241
  • 财政年份:
    2019
  • 资助金额:
    $ 98.26万
  • 项目类别:
Rapid Magnetomotive Thrombolysis for Stroke
快速磁动力溶栓治疗中风
  • 批准号:
    9066982
  • 财政年份:
    2014
  • 资助金额:
    $ 98.26万
  • 项目类别:

相似国自然基金

纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
  • 批准号:
    82373004
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
消融星状神经节通过神经-免疫调节对射血分数保留心衰的治疗作用及机制研究
  • 批准号:
    82370518
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
不全射频消融通过METTL1-tRNA修饰-糖代谢重编程信号轴诱导肾癌复发的机制研究
  • 批准号:
    82372056
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
SUMO2通过类泛素化修饰IRF3导致肝癌射频消融残癌免疫抑制的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
智能响应型纳米药物通过长效维持CTL活化提高肝癌消融术后免疫治疗应答的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Senescence and Salivary Gland Dysfunction
衰老和唾液腺功能障碍
  • 批准号:
    10892708
  • 财政年份:
    2023
  • 资助金额:
    $ 98.26万
  • 项目类别:
Characterization of spinal circuits underlying motor synergy function
运动协同功能背后的脊髓回路的表征
  • 批准号:
    10687832
  • 财政年份:
    2021
  • 资助金额:
    $ 98.26万
  • 项目类别:
Robot-Assisted 3D ICE Catheter for Cardiac Ablation
用于心脏消融的机器人辅助 3D ICE 导管
  • 批准号:
    9973517
  • 财政年份:
    2020
  • 资助金额:
    $ 98.26万
  • 项目类别:
Single-cell analysis to promote kidney repair
单细胞分析促进肾脏修复
  • 批准号:
    10428384
  • 财政年份:
    2020
  • 资助金额:
    $ 98.26万
  • 项目类别:
TR&D Project 1: Higher Throughput Multi-element Distribution & Quantitation at the Tissue Level
TR
  • 批准号:
    10652605
  • 财政年份:
    2020
  • 资助金额:
    $ 98.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了