The Cancer Cell Map Initiative v2.0
癌细胞图谱计划 v2.0
基本信息
- 批准号:10704587
- 负责人:
- 金额:$ 232.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-14 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Advanced Malignant NeoplasmAreaAtlas of Cancer Mortality in the United StatesAttentionBindingBioinformaticsBiological AssayBiologyBreastCaliforniaCancer CenterCatalogingCatalogsCell LineCell ProliferationClinicalClustered Regularly Interspaced Short Palindromic RepeatsCollectionComplexCopy Number PolymorphismCryoelectron MicroscopyDataDependenceDiseaseExpert SystemsFDA approvedFacultyFundingGene MutationGenesGenetic DiseasesGenetic ScreeningHead and Neck NeoplasmsHeterogeneityImageImmunofluorescence MicroscopyInformation NetworksInstitutionLaboratoriesLogicLungMalignant NeoplasmsMapsMindMissionModelingMolecularMutationNCI Center for Cancer ResearchNeoplasm MetastasisOther GeneticsPIK3CA genePathogenesisPathway interactionsPatientsPatternPhenotypePhysiologicalPoint MutationPrincipal InvestigatorProliferatingProteinsResearch PersonnelResourcesScienceScientistSisterSquamous CellStructural ModelsStructureSystemSystems BiologyTP53 geneTechniquesThe Cancer Genome AtlasTimeTrainingTranslatingUniversitiesanticancer researchcancer cellcancer genomecell motilitycombinatorialcomputerized toolsdeep learningdriver mutationdrug response predictionexperimental studygenome-wideinterestknockout genemolecular modelingmouse modelneoplastic cellnext generationpatient responsepersonalized medicineprecision medicineprecision oncologypressureprotein complexrare cancerscale upsimulationspatiotemporaltraining opportunitytransfer learningtreatment responsetumortumor initiation
项目摘要
THE CANCER CELL MAP INITIATIVE v2.0
OVERALL SUMMARY
The Cancer Genome Atlas and sister projects have now sequenced over 20,000 tumor genomes, providing a
catalog of gene mutations, copy number variants and other genetic alterations associated with cancer. These
data have made it clear that every cancer is a distinct genetic disease, with tumors that look physiologically
similar often driven by patterns of gene mutations that are strikingly different. Due to this molecular heterogeneity,
it is typically unclear what are the key driver mutations or dependencies in a given cancer and how these
influence pathogenesis and response to therapy. One key observation for interpreting tumor genomes is that the
many rare tumor mutations can be shown to converge on common molecular networks. Based on this premise
we created the Cancer Cell Map Initiative (CCMI), whose mission is to create comprehensive maps of cancer
molecular networks and to use these maps in intelligent systems for personalized therapy. In 2017, the CCMI
was funded as an NCI U54 Research Center for Cancer Systems Biology, integrating expertise in network
mapping, bioinformatic analysis and cancer research from leading academic laboratories at two University of
California campuses (UCSF and UCSD). We have since generated comprehensive networks of protein
interactions in breast and head-and-neck tumor cells and, from these data, identified several hundred protein
complexes under selective mutational pressure in cancer (NeST v1.0). We have piloted deep learning systems
(DCell, DrugCell and TCRP) that can use this protein network information to translate a patient’s tumor mutation
profile to a predicted drug response, including FDA-approved and exploratory agents. We have implemented a
rich portfolio of training opportunities and, leveraging UC institutional support, expanded the CCMI consortium
to include more than a dozen faculty at UC and, most recently, Stanford. In the next five years, the CCMI will
seek to: (1) Generate comprehensive protein interaction networks centered on key cancer driver genes in lung
squamous cells (in healthy and diseased states) as well as the PIK3CA and TP53 pathways, which are central
to many tumor types; (2) Systematically extend the CCMI collection of cancer protein interaction data with protein
immunofluorescent imaging and cryo-electron microscopy to formulate multi-scale cancer cell maps; (3) Dissect
the functional logic of these networks and maps by systematic genetic screening experiments in the same tumor
types and pathways, using a panel of scalable cell proliferation, phenotype and pathway readouts; (4)
Significantly advance and harden our DrugCell interpretable deep learning system for cancer precision medicine;
(5) Train the current and next generation of scientists in network biology and its applications to cancer research;
and (6) Continue to build a cadre of leading investigators to expand CCMI into a global coordinated partnership.
癌细胞图谱倡议 v2.0
总体总结
癌症基因组图谱和姐妹项目现已对 20,000 多个肿瘤基因组进行了测序,提供了
与癌症相关的基因突变、拷贝数变异和其他遗传改变的目录。
数据清楚地表明,每种癌症都是一种独特的遗传性疾病,肿瘤在生理学上看起来很相似
由于这种分子异质性,相似往往是由显着不同的基因突变模式驱动的。
通常不清楚特定癌症的关键驱动突变或依赖性是什么,以及这些突变如何发生
影响发病机制和治疗反应的一个关键观察结果是解释肿瘤基因组。
基于这个前提,许多罕见的肿瘤突变可以聚集在共同的分子网络上。
我们创建了癌症细胞图谱计划 (CCMI),其使命是创建全面的癌症图谱
2017 年,CCMI 开发了分子网络,并在智能系统中使用这些图谱进行个性化治疗。
被资助作为 NCI U54 癌症系统生物学研究中心,整合网络专业知识
来自两所大学领先学术实验室的绘图、生物信息分析和癌症研究
加州大学校园(加州大学旧金山分校和加州大学圣地亚哥分校)从此全面生成了蛋白质网络。
乳腺和头颈肿瘤细胞中的相互作用,并从这些数据中识别出数百种蛋白质
癌症选择性突变压力下的复合物(NeST v1.0)我们已经试点了深度学习系统。
(DCell、DrugCell 和 TCRP)可以使用该蛋白质网络信息来翻译患者的肿瘤突变
预测药物反应的概况,包括 FDA 批准的和探索性的药物。
丰富的培训机会组合,并利用加州大学机构的支持,扩大了 CCMI 联盟
未来五年,CCMI 将包括加州大学和斯坦福大学的十多名教员。
寻求:(1)生成以肺部关键癌症驱动基因为中心的全面蛋白质相互作用网络
鳞状细胞(健康和患病状态下)以及 PIK3CA 和 TP53 通路,这是核心
(2) 系统地扩展 CCMI 收集的癌症蛋白与蛋白质的相互作用数据
(3) 解剖
通过在同一肿瘤中进行系统的基因筛选实验来绘制这些网络和图谱的功能逻辑
类型和途径,使用一组可扩展的细胞增殖、表型和途径读数(4);
显着推进和强化我们用于癌症精准医学的 DrugCell 可解释深度学习系统;
(5) 培训当前和下一代网络生物学及其在癌症研究中的应用的科学家;
(6) 继续建立一支领先的研究人员队伍,将 CCMI 扩展为全球协调伙伴关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trey Ideker其他文献
Trey Ideker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trey Ideker', 18)}}的其他基金
Next generation massively multiplexed combinatorial genetic screens
下一代大规模多重组合遗传筛选
- 批准号:
10587354 - 财政年份:2023
- 资助金额:
$ 232.14万 - 项目类别:
Core 2: Software Infrastructure for Network Models and Cell Maps
核心 2:网络模型和小区地图的软件基础设施
- 批准号:
10704622 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
Core 2: Software Infrastructure for Network Models and Cell Maps
核心 2:网络模型和小区地图的软件基础设施
- 批准号:
10704622 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
Development of ex-vivo tumor culture for systems network biology and personalized medicine
用于系统网络生物学和个性化医疗的离体肿瘤培养的开发
- 批准号:
10830630 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
Project 3: From Networks and Structures to Hierarchical Whole Cell Models of Cancer
项目 3:从网络和结构到癌症的分层全细胞模型
- 批准号:
10704611 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
CYTOSCAPE: AN ECOSYSTEM FOR NETWORK GENOMICS
CYTOSCAPE:网络基因组学的生态系统
- 批准号:
10411738 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
Project 3: From Networks and Structures to Hierarchical Whole Cell Models of Cancer
项目 3:从网络和结构到癌症的分层全细胞模型
- 批准号:
10525590 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
Core 2: Software Infrastructure for Network Models and Cell Maps
核心 2:网络模型和小区地图的软件基础设施
- 批准号:
10525593 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
Project 3: From Networks and Structures to Hierarchical Whole Cell Models of Cancer
项目 3:从网络和结构到癌症的分层全细胞模型
- 批准号:
10704611 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
相似国自然基金
多区域环境因素复杂暴露反应关系的空间联合估计方法研究
- 批准号:82373689
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
区域出口产品升级的时空格局及机制研究——以粤港澳大湾区为例
- 批准号:42301182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多入口下穿隧道合流区域交通事故演化机理与自解释调控方法
- 批准号:52302437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应对多重不确定性的区域综合能源系统分布渐进调度理论研究
- 批准号:52377108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
异质性视角下稻米区域公用品牌价值攀升协同治理机制研究
- 批准号:72373129
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Fibroblast orchestration of the immune response in pancreatic cancer
胰腺癌免疫反应的成纤维细胞协调
- 批准号:
10706561 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
Development of ex-vivo tumor culture for systems network biology and personalized medicine
用于系统网络生物学和个性化医疗的离体肿瘤培养的开发
- 批准号:
10830630 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
Fibroblast orchestration of the immune response in pancreatic cancer
胰腺癌免疫反应的成纤维细胞协调
- 批准号:
10516238 - 财政年份:2022
- 资助金额:
$ 232.14万 - 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
- 批准号:
7362423 - 财政年份:2006
- 资助金额:
$ 232.14万 - 项目类别: