Engineered Probiotics for Closed-Loop Control of Disease-Associated Gut Metabolites in Gut-On-Chip Models
用于闭环控制芯片肠道模型中疾病相关肠道代谢物的工程益生菌
基本信息
- 批准号:10703502
- 负责人:
- 金额:$ 23.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Anti-Inflammatory AgentsArchitectureBiological AssayButyratesChemicalsClinicalComplexConsensusConsumptionCrohn&aposs diseaseDataDirected Molecular EvolutionDiseaseElectron TransportEngineered ProbioticsEngineeringEnsureEnvironmentEnzymesEpitheliumEquilibriumEscherichia coliGelGeneticHealthHumanHydrogen SulfideIn SituIn VitroIndividualInflammationIntegration Host FactorsIntestinesKineticsLinkLogicMeasurementMetabolic PathwayMetabolismMicrobeMitochondriaModalityModelingMucous MembraneMucous body substanceOrganOutputOxygenPathway interactionsPatientsPerformancePhysiologicalPhysiologyPlayProbioticsProductionPropertyPublishingReactive Oxygen SpeciesResearchResolutionRheologyRoleStructureSulfidesSystemTechnologyTherapeuticThickTranscriptional RegulationTubeUlcerative ColitisValidationWorkcommensal microbesdesigndesign,build,testdisorder controlgenotoxicitygut microbiotahigh rewardhigh riskhuman tissueinflammatory markerinterestmathematical modelmicrobialmucosal microbiotanovelnovel therapeuticsoperationoxidationpromoterresponsesensorsmall moleculespatiotemporalsynthetic biologytherapy outcometranscription factor
项目摘要
PROJECT SUMMARY
Engineered commensal microbes represent a promising platform for controlling microbial metabolism in
the gut microbiota for therapeutic outcomes. While strains have been successfully engineered to either reduce
the concentration of a toxic metabolite or produce a therapeutic one, strains capable of controlling the level of a
metabolite within a narrow window have not been developed. Such ‘smart probiotics’, able to dynamically
respond to the environment and either produce or consume a compound based on the local concentration, would
be particularly useful for stabilizing metabolites which play a concentration-dependent role in host health and
disease. For example, ulcerative colitis and Crohn’s disease have been linked to microbially produced hydrogen
sulfide (H2S), with a growing consensus that low levels of this molecule have anti-inflammatory properties and
support a healthy epithelium, whereas high concentrations of H2S are genotoxic, inhibit mitochondrial function
and butyrate oxidation, and potentially weaken the mucosal barrier. Given that H2S concentration varies spatially
and temporally throughout the mucosa, controlling H2S within a tight range is not possible with current small-
molecule sulfide donors, which release sulfide regardless of local concentration. We propose a new synthetic
biology-based approach to controlling microbial metabolites in situ, in which the engineered microbe uses a
transcription factor responsive to the metabolite of interest to dynamically balance the expression of metabolic
pathways for production and consumption of the metabolite. This will produce a stable, titratable concentration
in a manner analogous to a thermostat. In this proposal, we will demonstrate this technology by developing
engineered strains of E. coli Nissle to dynamically control the level of H2S in situ, incorporating mathematical
modeling and a human organ-chip platform into the design-built-test cycle to achieve robust and stable operation
in the complex gut environment. If successful, the proposed research will establish the design rules for a novel
synthetic biology control strategy applicable to many gut metabolites with concentration-dependent roles in
disease, identify and mitigate host factors that impact engineered strain performance, and facilitate greater
translatability of synthetic probiotics.
项目概要
工程共生微生物代表了控制微生物代谢的有前途的平台
肠道微生物群已被成功改造以减少治疗效果。
有毒代谢物的浓度或产生治疗性代谢物,能够控制有毒代谢物水平的菌株
尚未开发出能够在狭窄窗口内动态代谢的“智能益生菌”。
响应环境并根据当地浓度产生或消耗化合物,将
对于稳定代谢物特别有用,这些代谢物在宿主健康中发挥浓度依赖性作用
例如,溃疡性结肠炎和克罗恩病与微生物产生的氢气有关。
硫化物 (H2S),越来越多的人认为低水平的这种分子具有抗炎特性,并且
支持健康的上皮细胞,而高浓度的 H2S 具有遗传毒性,会抑制线粒体功能
和丁酸氧化,并可能削弱粘膜屏障,因为 H2S 浓度存在空间变化。
在整个粘膜中,在较小的电流范围内控制 H2S 是不可能的
硫化物分子供体,无论局部浓度如何都会释放硫化物。我们提出了一种新的合成方法。
基于生物学的原位控制微生物代谢物的方法,其中工程微生物使用
转录因子对感兴趣的代谢物作出反应,动态平衡代谢物的表达
代谢物的生产和消耗途径这将产生稳定的、可滴定的浓度。
以类似于恒温器的方式,在本提案中,我们将通过开发来演示这项技术。
工程化的大肠杆菌 Nissle 菌株能够在原位动态控制 H2S 水平,并结合数学
将建模和人体器官芯片平台纳入设计构建测试周期,以实现稳健稳定的运行
如果成功,拟议的研究将为新型药物建立设计规则。
合成生物学控制策略适用于许多具有浓度依赖性作用的肠道代谢物
疾病,识别和减轻影响工程菌株性能的宿主因素,并促进更大的
合成益生菌的可翻译性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Michael Woolston其他文献
Benjamin Michael Woolston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Michael Woolston', 18)}}的其他基金
Engineered Probiotics for Closed-Loop Control of Disease-Associated Gut Metabolites in Gut-On-Chip Models
用于闭环控制芯片肠道模型中疾病相关肠道代谢物的工程益生菌
- 批准号:
10572700 - 财政年份:2022
- 资助金额:
$ 23.93万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An air-liquid interface system to study Bordetella pertussis interactions with respiratory epithelia
研究百日咳博德特氏菌与呼吸道上皮细胞相互作用的气液界面系统
- 批准号:
10665943 - 财政年份:2023
- 资助金额:
$ 23.93万 - 项目类别:
Cellular mechanisms for the degeneration and aging of human rotator cuff tears
人类肩袖撕裂变性和衰老的细胞机制
- 批准号:
10648672 - 财政年份:2023
- 资助金额:
$ 23.93万 - 项目类别:
Multiplexed drug testing of micro-dissected tumors using a microfluidic platform with integrated electrochemical aptasensors
使用具有集成电化学适体传感器的微流体平台对显微解剖肿瘤进行多重药物测试
- 批准号:
10669408 - 财政年份:2023
- 资助金额:
$ 23.93万 - 项目类别:
Strategies to define and mitigate the placental and fetal alterations caused by maternal oxycodone exposure
确定和减轻母体羟考酮暴露引起的胎盘和胎儿改变的策略
- 批准号:
10750458 - 财政年份:2023
- 资助金额:
$ 23.93万 - 项目类别:
Advancement of a lead small molecule gp130 modulator for improving outcomes in joint fibrosis
领先的小分子 gp130 调节剂的进展,用于改善关节纤维化的结果
- 批准号:
10482204 - 财政年份:2022
- 资助金额:
$ 23.93万 - 项目类别: