HPF-X: High-pressure freezing with buffer exchange
HPF-X:带有缓冲液交换的高压冷冻
基本信息
- 批准号:10704139
- 负责人:
- 金额:$ 31.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAntibodiesAtmospheric PressureBiologicalBiological ProcessBuffersCell physiologyCellsCouplingCryo-electron tomographyCryoelectron MicroscopyCustomDataDevelopmentDevicesDiamondDiseaseElectron MicroscopyEndocrinologyEndocytosisEthaneEventFreezingFutureGoalsHealthHormonesIceImageImaging TechniquesImaging ligandsImmunologyIonsLabelLiftingLigandsLiquid substanceMapsMembraneMembrane ProteinsMethodsMicrofluidicsMicroscopyModificationMolecularMotionNeurosciencesOpticsOrganismOutcomePeptidesPerformancePharmaceutical PreparationsPharmacologyPhosphorylationPost-Translational Protein ProcessingProcessProteinsQualifyingRelaxationResearch PersonnelResolutionSample SizeSamplingSeriesSpecific qualifier valueStimulusSystemTechniquesTechnologyThermal ConductivityThickTimeTissue SampleTissuesValidationVirusVisualizationWait TimeWorkbioimagingbiological researchchemical fixationcryogenicscytokinedesignfluorescence imaginghigh resolution imagingimaging modalityimprovedinnovationinstrumentlive cell imagingmetermethod developmentnanobodiesnanoscalepharmacologicpreservationpressureprotein protein interactionprototypereceptorresponsesmall moleculespatiotemporalsuperresolution microscopytemporal measurementtoolultra high resolutionvirology
项目摘要
PROJECT SUMMARY ABSTRACT
Ligand-triggered events are central to many processes in neuroscience, endocrinology, virology, immunology,
and pharmacology. However, molecular and ultrastructural changes that follow the stimulus are difficult to
visualize because they involve rapid nanoscale motions and modifications of proteins and membranes. State-of-
the-art techniques are insufficient to capture these spatiotemporal changes. For example, live fluorescence
imaging is limited by the spatial resolution (diffraction-limit) and labeling constraints (no antibody access or
washing in live cells), while nanoscale imaging methods either lack temporal resolution to capture fast dynamics
(e.g., super-resolution optical microscopy) or are incompatible with live-cell imaging altogether (e.g., standard or
cryo-electron microscopy; expansion microscopy). Given these limitations, time-resolved cryo-vitrification
methods are ideal for capturing cellular processes after a defined wait time post-stimulation by freezing samples
in the state of amorphous ice prior to imaging. High-pressure freezing (HPF) is often used for this purpose
because of its relaxed sample thickness constraints (<300 µm) as compared to cryo-plunging at atmospheric
pressure (<10 µm). However, an HPF device compatible with time-resolved buffer exchange does not currently
exist. To this end, we will develop HPF-X – an HPF device with a capability for time-resolved buffer exchange
preceding cryo-vitrification. Buffer exchange will allow stimulating the sample with various biological and
pharmacological agents including ions, small molecules, peptides and proteins (e.g., hormones, cytokines,
antibodies, and nanobodies), and even viruses and cells. Thus, HPF-X will allow cryo-vitrifying cells, tissue
samples, or entire small organisms at a series of time points following stimulation with ligands for subsequent
interrogation with nanoscale imaging techniques such as electron microscopy and super-resolution optical
microscopy. This approach will allow capturing ligand-triggered cellular processes with nanoscale spatial
resolution and temporal resolution of <50 ms. Biological applications of this technique include nanoscale imaging
of protein-protein interactions, post-translational modifications, and protein-membrane dynamics. Although a
fundamentally new HPF instrument design is required to allow buffer exchange, our extensive preliminary data
confirms feasibility. In Aim 1, we will develop a high-pressure chamber compatible with buffer exchange and
cryo-vitrification and characterize its performance. In Aim 2, we will develop a method for time-resolved cryo-
cooling and validate the system using gold-standard biological samples. Development of HPF-X is an emergent
technical opportunity given the advent of nanoscale bioimaging. Importantly, this work goes beyond the current
method development regime in cryo-vitrification field because all available HPF devices are commercial. Our
custom-built HPF-X instrument will allow full control, versatility, and ease of adoption and modification by other
researchers based on their project needs, which cannot be achieved with off-the-shelf HPF instruments.
项目概要摘要
配体触发事件对于神经科学、内分泌学、病毒学、免疫学、
然而,刺激后的分子和超微结构变化很难确定。
可视化,因为它们涉及快速的纳米级运动以及蛋白质和膜的修饰。
最先进的技术不足以捕捉这些时空变化,例如实时荧光。
成像受到空间分辨率(衍射极限)和标记约束(没有抗体访问或
在活细胞中清洗),而纳米级成像方法要么缺乏时间分辨率来捕获快速动态
(例如,超分辨率光学显微镜)或与活细胞成像完全不兼容(例如,标准或
鉴于这些限制,时间分辨冷冻玻璃化。
该方法非常适合通过冷冻样品在刺激后经过规定的等待时间后捕获细胞过程
成像前处于无定形冰状态的高压冷冻(HPF)通常用于此目的。
因为与大气中的低温骤降相比,其样品厚度限制较宽松(<300 µm)
压力(<10 µm)但是,目前还没有与时间分辨缓冲液交换兼容的 HPF 设备。
为此,我们将开发 HPF-X——一种具有时间分辨缓冲交换能力的 HPF 设备。
冷冻玻璃化之前的缓冲液交换将允许用各种生物和化学物质刺激样品。
药物制剂,包括离子、小分子、肽和蛋白质(例如激素、细胞因子、
因此,HPF-X 将允许冷冻玻璃化细胞、组织。
样品或整个小生物体在用配体刺激后的一系列时间点进行后续分析
使用电子显微镜和超分辨率光学等纳米级成像技术进行询问
这种方法将允许以纳米级空间捕获配体触发的细胞过程。
该技术的分辨率和时间分辨率<50 ms。
蛋白质-蛋白质相互作用、翻译后修饰和蛋白质-膜动力学。
需要全新的 HPF 仪器设计来允许缓冲液交换,我们广泛的初步数据
在目标 1 中,我们将开发一个与缓冲液交换兼容的高压室。
在目标 2 中,我们将开发一种时间分辨冷冻玻璃化方法。
使用金标准生物样本冷却和验证系统是一项新兴的工作。
重要的是,这项工作超越了当前的水平。
冷冻玻璃化领域的方法开发体系,因为我们所有可用的 HPF 设备都是商业化的。
定制的 HPF-X 仪器将允许完全控制、多功能性以及易于其他人采用和修改
研究人员可以根据自己的项目需求进行定制,这是现成的 HPF 仪器无法实现的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Prigozhin其他文献
Maxim Prigozhin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Prigozhin', 18)}}的其他基金
Engineering fluid dynamics of cryo-plunging for improved vitrification
用于改善玻璃化的低温浸入的工程流体动力学
- 批准号:
10430822 - 财政年份:2022
- 资助金额:
$ 31.89万 - 项目类别:
Engineering fluid dynamics of cryo-plunging for improved vitrification
用于改善玻璃化的低温浸入的工程流体动力学
- 批准号:
10707442 - 财政年份:2022
- 资助金额:
$ 31.89万 - 项目类别:
相似国自然基金
抗体依赖性增强效应介导非洲猪瘟病毒致病的分子机制
- 批准号:32373024
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
抗体修饰的靶向型MOF材料的构建及其诱导HER2阳性乳腺癌铜死亡协同效应的研究
- 批准号:52371256
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
抗猴痘病毒人源抗体的筛选及功能研究
- 批准号:32370992
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
AQP4抗体介导血小板炎症参与视神经脊髓炎器官局域免疫发生的机制研究
- 批准号:82371349
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
单核-巨噬细胞来源的LAMP3调控ROS通路参与抗MDA5抗体阳性皮肌炎肺间质纤维化机制研究
- 批准号:82302051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidation of the generating mechanism of diffuse barrier discharge in air at atmospheric pressure
阐明大气压下空气中扩散势垒放电的发生机制
- 批准号:
19K04360 - 财政年份:2019
- 资助金额:
$ 31.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Core: Analytical, Cell Culture, Nitric Oxide Delivery
核心:分析、细胞培养、一氧化氮输送
- 批准号:
7514464 - 财政年份:2009
- 资助金额:
$ 31.89万 - 项目类别:
Exposure and biological response biomarkers of cigarette smoke
香烟烟雾的暴露和生物反应生物标志物
- 批准号:
7485197 - 财政年份:2007
- 资助金额:
$ 31.89万 - 项目类别:
Exposure and biological response biomarkers of cigarette smoke
香烟烟雾的暴露和生物反应生物标志物
- 批准号:
7337810 - 财政年份:2007
- 资助金额:
$ 31.89万 - 项目类别:
Exposure and biological response biomarkers of cigarette smoke
香烟烟雾的暴露和生物反应生物标志物
- 批准号:
7847893 - 财政年份:2007
- 资助金额:
$ 31.89万 - 项目类别: