Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
基本信息
- 批准号:10704223
- 负责人:
- 金额:$ 46.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-20 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAfferent NeuronsAreaAxonBlood VesselsBone DiseasesCalvariaCell Differentiation processCell LineageCell ProliferationCellsCephalicCoculture TechniquesCollaborationsDataDermalFemurFiberFollistatinFundingGenetic TranscriptionGenomicsGrowthHistologicHomeHomeostasisHumanImpairmentIn VitroInfiltrationJoint structure of suture of skullKnock-in MouseLegal patentLocationMapsMediatingMesenchymalMesenchymal Stem CellsMethodsMicrofluidicsModelingMolecularMonitorMorphogenesisMusNatural regenerationNerveNerve FibersNerve Growth FactorsNeuronsNociceptionOsteogenesisPatternPeripheralPhenocopyPhenotypePhosphotransferasesPlayProliferatingRecombinantsRegulationReporterReportingRoleScaphycephalySensorySignal PathwaySignal TransductionSkeletal DevelopmentSurgical suturesTechniquesTimeTransgenic OrganismsTropomyosinUndifferentiatedUp-RegulationVascularizationadenovirus mediated deliveryafferent nerveangiogenesisbonebone repaircell behaviorcraniumgene networkgenetic signatureinhibitorinsightlimb regenerationmechanical loadnerve supplyneuralneuropathologyneurotropicosteogenicosteoprogenitor cellprematurepreservationprogramsreceptorrepairedresponseskeletalskeletal stem cellspatiotemporalstem cell expansionstem cell proliferationstem cellstime intervaltooltranscriptomics
项目摘要
ABSTRACT
This is a renewal application of a program investigating the role of sensory nerves in bone. Our studies
during the first funding period demonstrate that NGF-dependent TrkA signaling by sensory nerves is the
primary driver of angiogenesis and osteogenesis in the developing femur and skull. In these avascular
settings, acute up-regulation of NGF in mesenchymal lineage cell domains is followed by nociceptive fiber
ingrowth, which subsequently home to locations of proliferating mesenchymal cells. Blockade of sensory
nerve ingrowth, either by inhibition of TrkA signaling or disruption of NGF, retards vascularization and
disrupts femoral and calvarial bone formation. Histological data in the calvaria model revealed that loss
of sensory nerve fibers is associated with reduced numbers of proliferating mesenchymal progenitor cells
(MPCs) in the sutures and premature suture closure. These observations suggest a paradigm in which
sensory nerves function in developing bone to maintain MPC plasticity, a concept well established in
models of limb regeneration and supported by recent studies in developing mouse femur. Our preliminary
findings directly examining the interaction of sensory nerve axons with MPCs in microfluidic chambers
suggest that infiltrating DRG nerve fibers induce MPC proliferation, but limit differentiation in a non-contact
dependent fashion. These effects appear to be mediated by neural derived FSTL1, which induces MPC
proliferation and impairs BMP-induced osteogenic differentiation. Together, this data support the premise
that TrkA+ sensory nerves function in developing bone to maintain stem cells in a proliferative,
undifferentiated state by delivering soluble factors that activate mitogenic and anti-differentiation
signaling pathways.
This conceptual model will be explored in studies divided into two Specific Aims. Specific Aim 1 will define the
spatiotemporal patterning of TrkA+ skeletal sensory nerves in the developing cranium, determine their
influence on MPC proliferation and cellular fate, and further elucidate signaling pathways associated with
impaired innervation. Specific Aim 2 will identify sensory axon-derived factors that regulate MPC proliferation
and cell fate decisions, and definitively identifying FSTL1 as a neural-derived factor which impacts MPC
cellular behavior. Our results should provide new insights into the fundamental roles sensory nerves play in
skeletal morphogenesis, homeostasis and repair, and provide critical insight into the neuropathological
manifestations associated with bone disorders in humans.
抽象的
这是研究感觉神经在骨骼中的作用的程序的更新应用。我们的研究
在第一个资助期间证明感觉神经的 NGF 依赖性 TrkA 信号传导是
股骨和颅骨发育中血管生成和骨生成的主要驱动力。在这些无血管的
设置中,间充质谱系细胞域中 NGF 的急性上调随后是伤害性纤维
向内生长,随后成为增殖间充质细胞的所在地。感官封锁
通过抑制 TrkA 信号传导或破坏 NGF,神经向内生长会延缓血管形成,
破坏股骨和颅骨骨的形成。颅骨模型中的组织学数据表明,损失
感觉神经纤维的减少与增殖间充质祖细胞数量的减少有关
(MPC) 中的缝线和缝线过早闭合。这些观察结果提出了一个范式,其中
感觉神经在骨骼发育中发挥作用,以维持 MPC 可塑性,这一概念在
肢体再生模型,并得到最近小鼠股骨发育研究的支持。我们的初步
研究结果直接检查微流体室中感觉神经轴突与 MPC 的相互作用
表明浸润的 DRG 神经纤维诱导 MPC 增殖,但限制非接触性分化
依赖时尚。这些效应似乎是由神经源性 FSTL1 介导的,FSTL1 会诱导 MPC
增殖并损害 BMP 诱导的成骨分化。这些数据共同支持了这一前提
TrkA+ 感觉神经在骨骼发育中发挥作用,以维持干细胞的增殖、
通过提供可激活有丝分裂和抗分化的可溶性因子来达到未分化状态
信号通路。
该概念模型将在分为两个具体目标的研究中进行探索。具体目标 1 将定义
发育中的颅骨中 TrkA+ 骨骼感觉神经的时空模式,决定了它们的
对 MPC 增殖和细胞命运的影响,并进一步阐明与其相关的信号通路
神经支配受损。具体目标 2 将鉴定调节 MPC 增殖的感觉轴突衍生因子
和细胞命运决定,并最终确定 FSTL1 是影响 MPC 的神经源性因子
细胞行为。我们的结果应该为感觉神经在疾病中发挥的基本作用提供新的见解。
骨骼形态发生、稳态和修复,并提供对神经病理学的重要见解
与人类骨骼疾病相关的表现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas L Clemens其他文献
The osteoblast sodium-citrate co-transporter (SLC13A5): a gatekeeper between global citrate homeostasis and tissue mineralization.
成骨细胞柠檬酸钠协同转运蛋白(SLC13A5):整体柠檬酸盐稳态和组织矿化之间的看门人。
- DOI:
10.1016/j.coemr.2023.100474 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:0
- 作者:
E. Chu;Jasmine Wu;Thomas L Clemens;Naomi Dirckx - 通讯作者:
Naomi Dirckx
Thomas L Clemens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas L Clemens', 18)}}的其他基金
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10785405 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10260104 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10483206 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
- 批准号:
10378304 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10512047 - 财政年份:2021
- 资助金额:
$ 46.58万 - 项目类别:
Functional Dissection of the MARK3 GWAS Locus for Bone Mineral Density
MARK3 GWAS 基因座骨矿物质密度的功能剖析
- 批准号:
10255877 - 财政年份:2020
- 资助金额:
$ 46.58万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
The role of SOCE in microglia and secondary degeneration after SCI
SOCE 在小胶质细胞和 SCI 后继发性变性中的作用
- 批准号:
10567211 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
Mechanism of ultrasound neuromodulation effects on glucose homeostasis and diabetes
超声神经调节对葡萄糖稳态和糖尿病的影响机制
- 批准号:
10586211 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
Targeted Temperature Modulation with Smart Radiometric Monitoring for Effective and Long-Lasting Opioid-Free Pelvic Pain Relief - A Novel Low-Cost, Portable, Tampon-sized Thermal Transfer Device.
通过智能辐射监测进行有针对性的温度调节,可有效且持久地缓解无阿片类药物的盆腔疼痛 - 一种新型低成本、便携式、卫生棉条大小的热转印设备。
- 批准号:
10760002 - 财政年份:2023
- 资助金额:
$ 46.58万 - 项目类别:
A Pilot Clinical Trial of Paricalcitol for Chronic Pancreatitis
帕立骨化醇治疗慢性胰腺炎的初步临床试验
- 批准号:
10434603 - 财政年份:2022
- 资助金额:
$ 46.58万 - 项目类别:
IND Enabling Studies for the Development of Pruritus Therapeutic PRA-523
瘙痒治疗 PRA-523 开发的 IND 启用研究
- 批准号:
10761395 - 财政年份:2022
- 资助金额:
$ 46.58万 - 项目类别: