Making antibody generation rapid, scalable, and democratic through machine learning and continuous evolution

通过机器学习和持续进化,使抗体生成快速、可扩展且民主

基本信息

  • 批准号:
    10687279
  • 负责人:
  • 金额:
    $ 166.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-10 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract It is hard to overstate the importance of monoclonal antibodies in the life sciences. Antibodies are critical tools in biomedical research and diagnostics (e.g. western blotting, immunoprecipitation, cytometry, biomarker discovery, and histology), are one of the most rapidly growing class of therapeutics, and are the basis for myriad new strategies in cancer therapy, such as checkpoint inhibitors that are revolutionizing treatment. Unfortunately, current methods for the generation of custom antibodies, including animal immunization and phage display, are slow, costly, inaccessible to most researchers, and often unsuccessful. We propose Autonomously EvolvinG Yeast-displayed antibodieS (AEGYS), a system for the continuous and rapid evolution of high-quality antibodies against custom antigens that requires only the simple culturing of yeast cells. We believe this can be achieved by combining cutting-edge generative machine learning algorithms for antibody library design with a new technology for in vivo continuous evolution and a yeast antigen-presenting cell that we will engineer. If successful, AEGYS should have a transformative impact across the whole of biomedicine by turning monoclonal antibody generation into a rapid, scalable, and accessible process where any lab with standard molecular biology capabilities can generate custom antibodies on demand simply by “immunizing” a test tube of yeast cells with an antigen. We anticipate that this democratization of antibody generation will also result in an explosion of crowdsourced antibody sequence data that will train our machine learning algorithms to design better antibody libraries for AEGYS, starting a virtuous cycle. We ourselves will use AEGYS to generate a panel of subtype- and conformation-specific nanobodies against biogenic amine receptors including those that respond to acetylcholine, adrenaline, dopamine, and other neurotransmitters, so that we can understand their role in neurobiology and addiction.!
项目概要/摘要 单克隆抗体在生命科学中的重要性怎么强调都不为过。抗体是生物医学的重要工具。 研究和诊断(例如蛋白质印迹、免疫沉淀、细胞计数、生物标志物发现和组织学) 增长最快的治疗方法之一,是癌症治疗中无数新策略的基础,例如 不幸的是,目前产生定制治疗的方法。 抗体,包括动物免疫和噬菌体展示,速度慢、成本高,大多数研究人员无法获得,而且通常 我们提出了自主进化的酵母展示抗体(AEGYS),这是一种连续且持续的系统。 只需简单培养酵母细胞即可快速开发针对定制抗原的高质量抗体。 相信这可以通过结合尖端的生成机器学习算法进行抗体库设计来实现 具有体内连续进化的新技术和我们将设计的酵母抗原呈递细胞。 如果成功,AEGYS 将通过单克隆抗体对整个生物医学产生变革性影响 生成到一个快速、可扩展且可访问的过程,任何具有标准分子生物学能力的实验室都可以 我们预计,只需用抗原“免疫”酵母细胞试管即可按需生成定制抗体。 抗体生成的民主化也将导致众包抗体序列数据的爆炸式增长 这将训练我们的机器学习算法为 AEGYS 设计更好的抗体库,从而开始一个良性循环。 我们自己将使用 AEGYS 生成一组针对生物胺的亚型和构象特异性纳米抗体 受体,包括那些对乙酰胆碱、肾上腺素、多巴胺和其他神经递质有反应的受体,这样我们就可以 了解它们在神经生物学和成瘾中的作用。!

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ProteinGym: Large-Scale Benchmarks for Protein Design and Fitness Prediction.
ProteinGym:蛋白质设计和健身预测的大规模基准。
  • DOI:
  • 发表时间:
    2023-12-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Notin, Pascal;Kollasch, Aaron W;Ritter, Daniel;van Niekerk, Lood;Paul, Steffanie;Spinner, Hansen;Rollins, Nathan;Shaw, Ada;Weitzman, Ruben;Frazer, Jonathan;Dias, Mafalda;Franceschi, Dinko;Orenbuch, Rose;Gal, Yarin;Marks, Debora S
  • 通讯作者:
    Marks, Debora S
Deep generative modeling of the human proteome reveals over a hundred novel genes involved in rare genetic disorders.
人类蛋白质组的深度生成模型揭示了一百多个与罕见遗传疾病有关的新基因。
  • DOI:
  • 发表时间:
    2023-11-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Orenbuch, Rose;Kollasch, Aaron W;Spinner, Hansen D;Shearer, Courtney A;Hopf, Thomas A;Franceschi, Dinko;Dias, Mafalda;Frazer, Jonathan;Marks, Debora S
  • 通讯作者:
    Marks, Debora S
Deep generative modeling of the human proteome reveals over a hundred novel genes involved in rare genetic disorders.
人类蛋白质组的深度生成模型揭示了一百多个与罕见遗传疾病有关的新基因。
  • DOI:
  • 发表时间:
    2024-01-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Orenbuch, Rose;Kollasch, Aaron W;Spinner, Hansen D;Shearer, Courtney A;Hopf, Thomas A;Franceschi, Dinko;Dias, Mafalda;Frazer, Jonathan;Marks, Debora S
  • 通讯作者:
    Marks, Debora S
ProteinNPT: Improving Protein Property Prediction and Design with Non-Parametric Transformers.
ProteinNPT:使用非参数转换器改进蛋白质特性预测和设计。
  • DOI:
  • 发表时间:
    2023-12-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Notin, Pascal;Marks, Debora S;Weitzman, Ruben;Gal, Yarin
  • 通讯作者:
    Gal, Yarin
Protein design using structure-based residue preferences.
使用基于结构的残基偏好进行蛋白质设计。
  • DOI:
  • 发表时间:
    2024-02-22
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Ding, David;Shaw, Ada Y;Sinai, Sam;Rollins, Nathan;Prywes, Noam;Savage, David F;Laub, Michael T;Marks, Debora S
  • 通讯作者:
    Marks, Debora S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Kruse其他文献

Andrew Kruse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Kruse', 18)}}的其他基金

Project 1: Structure, function, and inhibition of SEDS-family peptidoglycan polymerases
项目1:SEDS家族肽聚糖聚合酶的结构、功能和抑制
  • 批准号:
    10699954
  • 财政年份:
    2022
  • 资助金额:
    $ 166.79万
  • 项目类别:
Molecular basis of spore germination
孢子萌发的分子基础
  • 批准号:
    10659224
  • 财政年份:
    2022
  • 资助金额:
    $ 166.79万
  • 项目类别:
Project 1: Structure, function, and inhibition of SEDS-family peptidoglycan polymerases
项目1:SEDS家族肽聚糖聚合酶的结构、功能和抑制
  • 批准号:
    10699954
  • 财政年份:
    2022
  • 资助金额:
    $ 166.79万
  • 项目类别:
Making antibody generation rapid, scalable, and democratic through machine learning and continuous evolution
通过机器学习和持续进化,使抗体生成快速、可扩展且民主
  • 批准号:
    10474638
  • 财政年份:
    2020
  • 资助金额:
    $ 166.79万
  • 项目类别:
Making antibody generation rapid, scalable, and democratic through machine learning and continuous evolution
通过机器学习和持续进化,使抗体生成快速、可扩展且民主
  • 批准号:
    10021311
  • 财政年份:
    2020
  • 资助金额:
    $ 166.79万
  • 项目类别:
Making antibody generation rapid, scalable, and democratic through machine learning and continuous evolution
通过机器学习和持续进化,使抗体生成快速、可扩展且民主
  • 批准号:
    10260452
  • 财政年份:
    2020
  • 资助金额:
    $ 166.79万
  • 项目类别:
Molecular mechanisms of sigma receptor signaling
西格玛受体信号传导的分子机制
  • 批准号:
    9236106
  • 财政年份:
    2017
  • 资助金额:
    $ 166.79万
  • 项目类别:
Molecular mechanisms of sigma receptor signaling
西格玛受体信号传导的分子机制
  • 批准号:
    9906922
  • 财政年份:
    2017
  • 资助金额:
    $ 166.79万
  • 项目类别:
Molecular mechanisms of adiponectin signaling and PAQR function
脂联素信号传导和 PAQR 功能的分子机制
  • 批准号:
    9349368
  • 财政年份:
    2015
  • 资助金额:
    $ 166.79万
  • 项目类别:
Molecular mechanisms of adiponectin signaling and PAQR function
脂联素信号传导和 PAQR 功能的分子机制
  • 批准号:
    9144473
  • 财政年份:
    2015
  • 资助金额:
    $ 166.79万
  • 项目类别:

相似国自然基金

抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
  • 批准号:
    62302277
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
  • 批准号:
    22304062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
  • 批准号:
    10646631
  • 财政年份:
    2023
  • 资助金额:
    $ 166.79万
  • 项目类别:
In vitro pharmacology and In vivo neuroprotective effects of CMPI analogues in an optimized Zebrafish model of Parkinsons disease
CMPI 类似物在帕金森病优化斑马鱼模型中的体外药理学和体内神经保护作用
  • 批准号:
    10624889
  • 财政年份:
    2022
  • 资助金额:
    $ 166.79万
  • 项目类别:
Chemogenetic Inactivation of the Primate Internal Globus Pallidus as a treatment for Parkinsonism
灵长类内部苍白球的化学遗传学灭活治疗帕金森病
  • 批准号:
    10710400
  • 财政年份:
    2022
  • 资助金额:
    $ 166.79万
  • 项目类别:
Chemogenetic Inactivation of the Primate Internal Globus Pallidus as a treatment for Parkinsonism
灵长类内部苍白球的化学遗传学灭活治疗帕金森病
  • 批准号:
    10577404
  • 财政年份:
    2022
  • 资助金额:
    $ 166.79万
  • 项目类别:
In vitro pharmacology and In vivo neuroprotective effects of CMPI analogues in an optimized Zebrafish model of Parkinsons disease
CMPI 类似物在帕金森病优化斑马鱼模型中的体外药理学和体内神经保护作用
  • 批准号:
    10412533
  • 财政年份:
    2022
  • 资助金额:
    $ 166.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了