Novel function of a mitochondria phosphatase in cardiac development
线粒体磷酸酶在心脏发育中的新功能
基本信息
- 批准号:10687847
- 负责人:
- 金额:$ 53.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectApoptosisAttenuatedBioinformaticsBiological ProcessCardiacCardiac MyocytesCell Cycle ArrestCellsCrista ampullarisDNADataDefectDevelopmentEmbryoFibroblastsGenesGenetic TranscriptionHeartHeart AbnormalitiesHeterozygoteHomeostasisInner mitochondrial membraneKnock-outKnockout MiceLoxP-flanked alleleMedialMitochondriaMitochondrial ProteinsModelingMolecularMorphogenesisMorphologyMusMutationMyocardiumNuclearOxygen ConsumptionPathway interactionsPhenotypePhosphatidylinositol PhosphatesPhospholipidsPhosphoric Monoester HydrolasesPhosphorylationPhysiologicalPlayProcessProliferatingProtein DephosphorylationProtein Tyrosine PhosphataseRespirationRoleSignal TransductionSmooth MuscleSpecificityStressSuccinate DehydrogenaseThinnessZebrafishactivating transcription factor 4biological adaptation to stresscalcificationcardiogenesiscongenital heart disorderembryonic stem cellendoplasmic reticulum stressheart functionimplantationin vivoinhibitorinsightlipidomicsloss of functionmitochondrial dysfunctionmouse modelnovelphosphatidylglycerophosphatephosphoproteomicsresponsesenescencetranscriptome sequencing
项目摘要
PROJECT SUMMARY
Mitochondria are essential for cardiomyocyte (CM) differentiation and cardiac morphogenesis. Mutations in
genes encoding mitochondrial proteins frequently result in congenital heart disease, highlighting the need to
elucidate key molecular pathway(s) in mitochondrial homeostasis during heart development. Protein Tyrosine
Phosphatase localized to the Mitochondrion 1 (PTPMT1) is a dual-specificity mitochondrial phosphatase
encoded by nuclear DNA. PTPMT1 is exclusively localized to mitochondria, being anchored to the inner
mitochondrial membrane. PTPMT1 is expressed in CMs throughout several developmental stages. To
determine the role of PTPMT1 in CMs, we generated a Ptpmt1 constitutive CM-specific knockout (cKO) mouse
model. Our preliminary data revealed that Ptpmt1 cKO mice display embryonic lethality. Ptpmt1 cKO mice
displayed thinner compact zone myocardium, with decreased CM proliferation. We also observed significantly
decreased mitochondrial respiration rate and abnormal mitochondrial morphology in Ptpmt1 cKO hearts,
demonstrating that PTPMT1 plays a critical role in developing CMs and in maintaining normal mitochondrial
homeostasis. We also examined previously described PTPMT1 substrates in Ptpmt1 cKO hearts relative to
controls, but could find no evidence to support them being direct substrates of PTPMT1 in CMs. To gain further
insight into pathways affected by loss of PTPMT1, we performed RNA-seq analysis of Ptpmt1 cKO hearts.
Bioinformatics analysis revealed that loss of PTPMT1 significantly activated the Activating Transcription Factor
4 (ATF4) pathway. ATF4 controls expression of a wide range of adaptive genes that allow cells to survive
periods of mitochondrial stress. However, under persistent stress conditions, ATF4 promotes induction of cell-
cycle arrest, apoptosis and senescence. Notably, reduced expression of ATF4 in global Atf4-haplodeficient and
smooth muscle-specific Atf4 knockout mice attenuates ER stress and reduces medial and atherosclerotic
calcification, highlighting new opportunities afforded by favoring a stress-relief adaptive effect over a
maladaptive effect by modulating ATF4 activation. The foregoing evidence leads us to the hypothesis that
PTPMT1 plays an essential role in cardiac development through modulation of specific substrates, and that
partial loss of ATF4, activated in response to mitochondrial stress in Ptpmt1 knockout CMs, may ameliorate,
but complete loss of ATF4 may exacerbate, Ptpmt1 cKO phenotypes. Accordingly, our specific aims are to: 1.
Elucidate the role of PTPMT1 in CM mitochondrial homeostasis and cardiac development and function by
analyzing Ptpmt1 cKO mice, and to identify endogenous substrates of PTPMT1 in CMs by performing
unbiased lipidomics and phosphoproteomics analyses; and 2. Determine the consequences of partial or
complete loss of ATF4 in CMs on phenotypes of Ptpmt1 cKO mice by analyzing CM-specific Ptpmt1
knockout/Atf4 heterozygous (hcKO) knockout mice and CM-specific Ptpmt1/Atf4 double knockout (dcKO) mice.
项目概要
线粒体对于心肌细胞(CM)分化和心脏形态发生至关重要。突变在
编码线粒体蛋白的基因经常导致先天性心脏病,强调需要
阐明心脏发育过程中线粒体稳态的关键分子途径。蛋白质酪氨酸
定位于线粒体 1 (PTPMT1) 的磷酸酶是一种双特异性线粒体磷酸酶
由核DNA编码。 PTPMT1 专门定位于线粒体,锚定于线粒体内部
线粒体膜。 PTPMT1 在多个发育阶段的 CM 中表达。到
为了确定 PTPMT1 在 CM 中的作用,我们生成了 Ptpmt1 组成型 CM 特异性敲除 (cKO) 小鼠
模型。我们的初步数据显示 Ptpmt1 cKO 小鼠表现出胚胎致死性。 Ptpmt1 cKO小鼠
显示心肌致密区变薄,CM 增殖减少。我们还观察到显着
Ptpmt1 cKO 心脏中线粒体呼吸速率降低和线粒体形态异常,
证明 PTPMT1 在 CM 的形成和维持正常线粒体方面发挥着关键作用
体内平衡。我们还检查了之前描述的 Ptpmt1 cKO 心脏中的 PTPMT1 底物相对于
对照,但找不到证据支持它们是 CM 中 PTPMT1 的直接底物。为了进一步获得
为了深入了解 PTPMT1 缺失影响的通路,我们对 Ptpmt1 cKO 心脏进行了 RNA 测序分析。
生物信息学分析表明,PTPMT1 的缺失显着激活了激活转录因子
4 (ATF4) 途径。 ATF4 控制多种适应性基因的表达,使细胞能够生存
线粒体应激期。然而,在持续的应激条件下,ATF4 会促进细胞-
周期停滞、细胞凋亡和衰老。值得注意的是,在全球 Atf4 单倍体缺陷和
平滑肌特异性 Atf4 基因敲除小鼠可减轻 ER 应激并减少内侧和动脉粥样硬化
钙化,强调了通过有利于缓解压力的适应性效应而不是
通过调节 ATF4 激活产生适应不良效应。上述证据使我们得出这样的假设:
PTPMT1 通过调节特定底物在心脏发育中发挥重要作用,并且
Ptpmt1 敲除 CM 中响应线粒体应激而激活的 ATF4 部分丢失可能会改善,
但 ATF4 的完全丧失可能会加剧 Ptpmt1 cKO 表型。因此,我们的具体目标是: 1.
通过以下方式阐明 PTPMT1 在 CM 线粒体稳态以及心脏发育和功能中的作用
分析 Ptpmt1 cKO 小鼠,并通过执行来鉴定 CM 中 PTPMT1 的内源性底物
无偏见的脂质组学和磷酸化蛋白质组学分析; 2. 确定部分或部分的后果
通过分析 CM 特异性 Ptpmt1,发现 Ptpmt1 cKO 小鼠表型的 CM 中 ATF4 完全丧失
敲除/Atf4 杂合 (hcKO) 敲除小鼠和 CM 特异性 Ptpmt1/Atf4 双敲除 (dcKO) 小鼠。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ju Chen其他文献
Ju Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ju Chen', 18)}}的其他基金
ATF4 a Novel Regulator of Cardiac Development
ATF4 心脏发育的新型调节剂
- 批准号:
10657081 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Novel function of a mitochondria phosphatase in cardiac development
线粒体磷酸酶在心脏发育中的新功能
- 批准号:
10181409 - 财政年份:2021
- 资助金额:
$ 53.91万 - 项目类别:
Protein Kinase Novel 2 (PKN2) in heart
心脏中的蛋白激酶 Novel 2 (PKN2)
- 批准号:
10548141 - 财政年份:2021
- 资助金额:
$ 53.91万 - 项目类别:
Protein Kinase Novel 2 (PKN2) in heart
心脏中的蛋白激酶 Novel 2 (PKN2)
- 批准号:
10322445 - 财政年份:2021
- 资助金额:
$ 53.91万 - 项目类别:
Novel function of a mitochondria phosphatase in cardiac development
线粒体磷酸酶在心脏发育中的新功能
- 批准号:
10436945 - 财政年份:2021
- 资助金额:
$ 53.91万 - 项目类别:
相似国自然基金
应激颗粒自噬对低氧诱导猪卵泡颗粒细胞凋亡的影响及机制研究
- 批准号:32302741
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MLCK1介导细胞凋亡和自噬影响炎症性肠病进展
- 批准号:82370568
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
EHMT1通过CBX4/MLKL轴调控心肌细胞坏死性凋亡影响心肌缺血再灌注损伤的机制研究
- 批准号:82370288
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
VNN1通过内质网非折叠蛋白应激介导单核巨噬细胞凋亡影响创伤患者脓毒症发生的机制研究
- 批准号:82372549
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
草鱼贮藏过程肌细胞凋亡对鱼肉品质的影响机制研究
- 批准号:32372397
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Plasma neurofilament light chain as a potential disease monitoring biomarker in Wolfram syndrome
血浆神经丝轻链作为 Wolfram 综合征潜在疾病监测生物标志物
- 批准号:
10727328 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Clinical Trial Readiness for Children 0-5 years with Congenital Muscular Dystrophy Secondary to LAMA2 Mutations
0-5 岁 LAMA2 突变继发先天性肌营养不良症儿童的临床试验准备情况
- 批准号:
10686586 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别: