Multifunctional 3D Bioelectronic and Microfluidic Hybrid Systems for Online Monitoring, Regulation, and Vascularization of Organoids
用于在线监测、调节和类器官血管化的多功能 3D 生物电子和微流体混合系统
基本信息
- 批准号:10688234
- 负责人:
- 金额:$ 19.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlzheimer&aposs DiseaseAwardBehaviorBiochemicalBiologicalBiological ModelsBiomimeticsBiosensing TechniquesBlood VesselsBrainBrain MappingCellsCharacteristicsCollaborationsCommunitiesCulture MediaDevelopmentDevicesDimensionsDiseaseDrug ScreeningDrug toxicityElectric StimulationElectronicsElectrophysiology (science)EvaluationGeometryGoalsHeartHeterogeneityHumanHybridsIn VitroInvestigationKidneyLightLocationLongevityLungMeasurementMechanicsMicroelectrodesMicrofluidicsMonitorNational Institute of Biomedical Imaging and BioengineeringNeurosciencesNeurosciences ResearchOnline SystemsOpticsOrganogenesisOrganoidsOxygenPatternPerformancePluripotent Stem CellsPorosityPropertyPublic HealthReaction TimeRegenerative MedicineRegulationResearchResolutionRouteStructureSurfaceSystemSystems IntegrationTechniquesThinnessTissue EngineeringTissue ModelTissuesVascularizationWorkadult stem cellbioelectronicsbiomaterial compatibilitybody systemdensitydesignflexibilityimprovedin vivoinduced pluripotent stem cellinnovationinterestlight emissionlithographyminiaturizemulti-electrode arraysmultidisciplinarymultimodalitynanofabricationnervous system disorderneural patterningneural stimulationneurodevelopmentnew technologynutritionoptogeneticspersonalized medicinepharmacologicpolydimethylsiloxanepreventsensorsmall moleculespatiotemporaltissue culturetwo-dimensional
项目摘要
PROJECT SUMMARY/ABSTRACT
Human organoids are miniaturized model systems of organs produced by three-dimensional (3D) cultures of
tissue-resident-adult stem cells (ASCs) or pluripotent stem cells (PSCs) in vitro. They have emerged as a
promising platform for modeling tissue development and disease, personalized medicine development, drug
screening and drug toxicity investigations. Despite their great potential, current human organoids suffer from
immature structure and functionality, limited heterogeneity, as well as limited accessible readouts for organoid
evaluation. For example, detailed investigations of these 3D biosystems, such as 3D electrophysiological
mapping for brain and heart organoids, cannot be achieved using conventional approaches such as two-
dimensional (2D) multi-electrode arrays (MEAs) for modulation and multimodal sensing. Furthermore, most
current biosystems lack stable and mature vascularization that exists in vivo, which poses challenges to
controlled delivery of oxygen, nutrition, and molecules like neural patterning factors to enhance organoid size,
lifespan, and complexity. Our goal is to develop a soft electronic/microfluidic hybrid 3D network for online
monitoring, regulation, and vascularization of human organoids. The resulting system will integrate separately
addressable electrical, optical, electrochemical, and thermal sensors and stimulators of designated locations
with 3D biomimetic microvascular networks for simultaneous sensing, stimulation, and well-controlled delivery
of molecules into deep tissues to study tissue development and modulation. We will achieve this goal through
pursuing three specific aims: (1) Develop multifunctional 3D electronic networks with high spatiotemporal
resolution for online monitoring and regulation of organoid function, (2) Develop biomimetic 3D microvascular
networks for the vascularization of 3D tissues and integrate them with 3D electronic networks into a hybrid
system, and (3) Evaluate the efficiency and functional robustness of the integrated system in vitro using brain
organoids as an example. Our proposed multifunctional hybrid system incorporates the following notable
innovative features: 1) Soft, stretchable 3D networks for electrical, optical, electrochemical, and thermal sensing
and stimulation of human organoids, 2) Biomimetic 3D microvascular networks for the vascularization of human
organoids, 3) Fully integrated electronics and microfluidics networks as a micro-lab for investigating various
induced and natural behaviors of human organoids. This work will create a new route to study neurodevelopment
and neurological disorders through simultaneous monitoring, regulation, and vascularization of brain organoids
throughout their 3D interior, which is of broad potential interest to the neuroscience community. In addition, the
developed 3D hybrid system can be applied to other types of organoids, including heart, lung, and kidney for in
vitro studies of related diseases.
项目概要/摘要
人体类器官是由三维 (3D) 培养物产生的微型器官模型系统
体外组织驻留成体干细胞(ASC)或多能干细胞(PSC)。他们已经成为
用于组织发育和疾病建模、个性化医学开发、药物的有前途的平台
筛选和药物毒性研究。尽管潜力巨大,但目前的人类类器官仍面临着以下问题:
类器官的结构和功能不成熟、异质性有限以及可访问的读数有限
评估。例如,对这些 3D 生物系统的详细研究,如 3D 电生理学
使用传统方法(例如两种方法)无法实现大脑和心脏类器官的绘图
用于调制和多模态传感的二维 (2D) 多电极阵列 (MEA)。此外,大多数
目前的生物系统缺乏体内存在的稳定且成熟的血管化,这对
控制氧气、营养和神经模式因子等分子的输送,以增强类器官的大小,
寿命和复杂性。我们的目标是开发一种用于在线的软电子/微流体混合 3D 网络
人体类器官的监测、调节和血管化。由此产生的系统将单独集成
指定位置的可寻址电、光、电化学和热传感器和刺激器
具有 3D 仿生微血管网络,可同时传感、刺激和良好控制的输送
分子进入深层组织以研究组织发育和调节。我们将通过以下方式实现这一目标
追求三个具体目标:(1)开发高时空多功能3D电子网络
类器官功能在线监测和调节的解决方案,(2)开发仿生3D微血管
用于 3D 组织血管化的网络,并将其与 3D 电子网络集成为混合体
系统,以及(3)使用大脑在体外评估集成系统的效率和功能鲁棒性
以类器官为例。我们提出的多功能混合系统包含以下值得注意的内容
创新特点: 1) 用于电气、光学、电化学和热传感的柔软、可拉伸的 3D 网络
和刺激人体类器官,2)用于人体血管化的仿生 3D 微血管网络
类器官,3)完全集成的电子和微流体网络作为微型实验室,用于研究各种
人类类器官的诱导行为和自然行为。这项工作将为研究神经发育开辟一条新途径
通过同时监测、调节脑类器官和血管化来治疗神经系统疾病
整个 3D 内部,这引起了神经科学界广泛的潜在兴趣。此外,
开发的 3D 混合系统可应用于其他类型的类器官,包括心脏、肺和肾脏
相关疾病的体外研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biosensor integrated tissue chips and their applications on Earth and in space.
生物传感器集成了组织芯片及其在地球和太空中的应用。
- DOI:10.1016/j.bios.2022.114820
- 发表时间:2023-02-15
- 期刊:
- 影响因子:12.6
- 作者:Anne Yau;Zizheng Wang;Nadya Ponthempilly;Yi Zhang;Xueju Wang;Yupeng Chen
- 通讯作者:Yupeng Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xueju Wang其他文献
Xueju Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xueju Wang', 18)}}的其他基金
Multifunctional 3D Bioelectronic and Microfluidic Hybrid Systems for Online Monitoring, Regulation, and Vascularization of Organoids
用于在线监测、调节和类器官血管化的多功能 3D 生物电子和微流体混合系统
- 批准号:
10510946 - 财政年份:2022
- 资助金额:
$ 19.6万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 19.6万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 19.6万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 19.6万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 19.6万 - 项目类别: