Harnessing stem cells and synthetic gene circuits to repair glomerular injury
利用干细胞和合成基因电路修复肾小球损伤
基本信息
- 批准号:10687570
- 负责人:
- 金额:$ 142.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAnimal ModelAwardBiologicalBiologyBloodBudgetsCOVID-19CellsChronic Kidney FailureClinicalDevelopmentDiabetes MellitusDialysis procedureDiseaseDisease OutcomeDisease ProgressionDrug Side EffectsEconomicsEnd stage renal failureEndotheliumEngineeringEnvironmental Risk FactorEpithelial CellsExcisionExpenditureExperimental ModelsGlomerular CapillaryGoalsHIV/AIDSHumanInjuryInjury to KidneyKidneyKidney DiseasesKidney TransplantationKnowledgeMalignant NeoplasmsMedicareMedicineModalityModelingMolecularMolecular TargetNatural regenerationNephrologyOrgan TransplantationOrgan failureOrganoidsParkinson DiseasePatientsPharmaceutical PreparationsPhysiologicalPopulationProcessPublic HealthResearchResearch Project GrantsRiskSynthetic GenesTechnologyTissue MicroarrayTissuesToxinUnited States National Institutes of HealthVirus DiseasesWorkblood filtrationcell injurycell typecostfunctional restorationgenetic risk factorglomerular functionhigh rewardhigh riskhuman stem cellsimprovedinnovationmicrophysiology systemnovel therapeutic interventionnovel therapeuticsorgan on a chippodocyteprogramsrenal damagerepairedresponsesocialstem cell biologystem cellstissue repairtoolwasting
项目摘要
More than 15% of U.S. adults suffer from chronic kidney disease (CKD) and end-stage kidney disease
(ESKD), which costs more than $81 billion in annual Medicare expenditures (almost double the entire NIH
budget). Worldwide, there are more patients with CKD (850 million) than diabetes (422 million), COVID-19
disease (584 million, August 2022), cancer (42 million), HIV/AIDS (36.7 million), and Parkinson’s disease (10
million). Compounding the overwhelming burden of CKD, there are no therapies proven to reverse or even halt
CKD progression to ESKD. Currently, the only treatment options for ESKD are dialysis and kidney
transplantation. Because survival on dialysis is limited (five to ten years), and access to organ transplantation
is insufficient, many patients die while waiting for a kidney transplant. Innovative, high-risk, high-reward
approaches, such as those proposed here, are needed to improve kidney disease outcomes. Progress in
kidney medicine is limited by the lack of experimental models that can accurately recapitulate human
physiological responses. Due to divergent developmental and functional molecular mechanisms, animal
models often fail to faithfully replicate human kidney biology and drug responses. To address this significant
limitation, research in my lab integrates technologies at the interface of human stem cell biology, organoids
and organs-on-chips or tissue-chip microphysiological systems, and cellular reprogramming to help advance
molecular-level understanding of kidney disease mechanisms and discover new therapeutic strategies.
The most severe forms of kidney disease involve injury and irreversible damage to podocytes -- the
terminally differentiated epithelial cells that encase glomerular capillaries and function together with the
endothelium to regulate the removal of toxins and waste from the blood. Because podocytes do not replenish
themselves naturally, damage to these cells (through drug side effects, viral infections, genetic and
environmental risk factors) often progresses to CKD and organ failure. There is an urgent need to develop new
tools to ease the social, economic, and clinical burden of kidney disease. This proposal offers strategies to
repair and regenerate damaged kidney tissues by leveraging our stem cell-derived kidney models to uncover
tunable molecular targets for cell-type-specific sensing and stimulation of tissue repair processes. We will
extend these findings to engineer synthetic molecular circuits for autonomous repair of damaged podocytes
and glomerular tissues to help restore the kidney’s blood filtration function. Consistent with the goals of the NIH
Director’s New Innovator Award program, this proposal presents an unconventional approach to kidney biology
and medicine by providing new avenues to repair and regenerate injured kidney tissues with biological
relevance to humans. Accomplishing the goals of this study will represent a paradigm shift in research and
clinical nephrology, providing opportunities to develop cell-autonomous strategies as new therapeutic
modalities for kidney disease. Thus, the risks are justified by the magnitude of potential impact.
超过 15% 的美国成年人患有慢性肾病 (CKD) 和终末期肾病
(ESKD),每年的医疗保险支出超过 810 亿美元(几乎是整个 NIH 的两倍)
在全球范围内,慢性肾病患者(8.5 亿)比糖尿病(4.22 亿)和 COVID-19 患者还要多。
疾病(5.84 亿,2022 年 8 月)、癌症(4200 万)、艾滋病毒/艾滋病(3670 万)和帕金森病(10
加重了 CKD 的巨大负担,目前还没有任何治疗方法被证明可以逆转甚至停止。
CKD 进展为 ESKD 目前,ESKD 的唯一治疗选择是透析和肾脏治疗。
因为透析的生存期有限(五到十年),并且接受器官移植。
肾移植不足,许多患者在等待肾移植过程中死亡。创新、高风险、高回报。
需要诸如此处提出的方法来改善肾脏疾病的结果。
肾脏医学因缺乏能够准确再现人类肾脏的实验模型而受到限制
由于不同的发育和功能分子机制,动物
为了解决这一重大问题,模型通常无法忠实地复制人类肾脏生物学和药物反应。
局限性,我实验室的研究整合了人类干细胞生物学、类器官的接口技术
器官芯片或组织芯片微生理系统以及细胞重编程以帮助推进
从分子水平了解肾脏疾病机制并发现新的治疗策略。
最严重的肾脏疾病涉及足细胞的损伤和不可逆的损伤
终末分化的上皮细胞包围肾小球毛细血管并与肾小球毛细血管一起发挥功能
内皮细胞调节血液中毒素和废物的清除,因为足细胞不会补充。
这些细胞本身受到损害(通过药物副作用、病毒感染、遗传和
环境危险因素)往往会进展为 CKD 和器官衰竭,因此迫切需要开发新的治疗方法。
该提案提供了减轻肾脏疾病的社会、经济和临床负担的工具。
利用我们的干细胞衍生肾脏模型来修复和再生受损的肾脏组织
用于细胞类型特异性传感和组织修复过程刺激的可调节分子靶标。
将这些发现扩展到工程合成分子电路以自主修复受损的足细胞
和肾小球组织,以帮助恢复肾脏的血液过滤功能,这与 NIH 的目标一致。
主任新创新者奖计划,该提案提出了一种非常规的肾脏生物学方法
和医学通过生物修复和再生受损肾组织提供新途径
实现本研究的目标将代表研究和领域的范式转变。
临床肾病学,为开发细胞自主策略作为新的治疗方法提供了机会
因此,潜在影响的程度证明了这些风险是合理的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samira Musah其他文献
Samira Musah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 142.58万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 142.58万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 142.58万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 142.58万 - 项目类别: