Novel Quality Measures for Primary Care Management of Attention-Deficit/Hyperactivity Disorder

注意力缺陷/多动障碍初级保健管理的新质量措施

基本信息

  • 批准号:
    10686112
  • 负责人:
  • 金额:
    $ 19.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-18 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT Attention-Deficit/Hyperactivity Disorder (ADHD) affects 8-10% of US children. Primary care providers (PCPs) care for most children with ADHD but quality gaps in ADHD treatment, with sociodemographic disparities as a potential driver, may lead to life-long morbidity and/or unnecessary treatments. There is an urgent need to develop quality measures for ADHD treatment, as a prerequisite for mitigating disparities and improving health outcomes. The objective of this proposal is to leverage recent advances in machine learning (ML) methods – enabling the analysis of electronic health record (EHR) data of an entire patient population – to develop robust quality measures for ADHD treatment, and to prepare for quality improvement interventions. This K23 proposal will accelerate Dr. Bannett’s transition into an independent physician scientist, towards his long-term goal to improve community-based primary health care for children with developmental and behavioral disorders. His multidisciplinary team of mentors include Heidi Feldman (ADHD research mentor), C. Jason Wang (health care technology & health services co-mentor), and Grace Lee (quality improvement & implementation science co- mentor). This nationally recognized team of physician scientists will assure Dr. Bannett achieves his goals, to (1) apply machine learning techniques to assess quality of care while mitigating bias, (2) advance research skills in advanced statistics and in qualitative methods, (3) build expertise in quality improvement and implementation science methods, and (4) enhance professional skills and transition to independence. Dr. Bannett’s clinical and research experiences, his mentoring team, and the environment at Stanford, position him to achieve the proposal’s aims. Building upon his experiences in analyzing EHR data and successes in piloting a natural language processing pipeline, Dr. Bannett has the following specific aims: (1) to develop guideline- based quality measures that combine ML analysis of free text with structured EHR data to assess PCP treatment of children aged 4-11 years with ADHD, (2) to assess PCP adherence to evidence-based guidelines for ADHD treatment and to detect disparities in care and minimize related bias in ML models, (3) to prioritize quality improvement interventions aimed at improving ADHD care and mitigating disparities that family and clinician stakeholders consider feasible, acceptable, and important. Aligned with the NIMH’s strategic plan, this proposal will (1) strengthen collaboration between stakeholders to continuously improve evidence-based practices in primary care settings, (2) identify and prioritize targets for planned PCP- and systems-level quality improvement interventions aimed at standardizing ADHD care and mitigating disparities, and (3) apply novel technologies that provide real-time feedback and continuous monitoring of high-quality ADHD care. With future R01 funding, Dr. Bannett will cross-validate developed quality measures in a national network of pediatric healthcare systems, and, in parallel, implement data-driven quality improvement interventions.
项目概要/摘要 注意力缺陷/多动症 (ADHD) 影响着 8-10% 的美国儿童。初级保健提供者 (PCP)。 照顾大多数患有多动症的儿童,但多动症治疗的质量存在差距,社会人口统计学差异是 潜在的司机,可能导致终身发病和/或不必要的治疗。 制定多动症治疗的质量措施,作为缩小差距和改善健康的先决条件 该提案的目标是利用机器学习 (ML) 方法的最新进展 – 能够分析整个患者群体的电子健康记录 (EHR) 数据 – 开发强大的 ADHD 治疗的质量措施,并为质量改进干预措施做好准备。 将加速 Bannett 博士向独立医师科学家的转变,实现他的长期目标 改善针对患有发育和行为障碍的儿童的社区初级卫生保健。 多学科导师团队包括 Heidi Feldman(多动症研究导师)、C. Jason Wang(医疗保健) 技术与健康服务联合导师)和 Grace Lee(质量改进与实施科学联合导师) 这个全国公认的医师科学家团队将确保班尼特博士实现他的目标, (1) 应用机器学习技术评估护理质量,同时减少偏见,(2) 推进研究 高级统计和定性方法方面的技能,(3) 建立质量改进方面的专业知识和 实施科学方法,以及(4)提高专业技能并过渡到独立博士。 班尼特的临床和研究经验、他的指导团队以及斯坦福大学的环境使他处于有利地位 以他在分析电子病历数据和试点成功方面的经验为基础,实现该提案的目标。 Bannett 博士的自然语言处理流程有以下具体目标:(1)制定指南- 基于质量措施,将自由文本的 ML 分析与结构化 EHR 数据相结合来评估 PCP 治疗 4-11 岁 ADHD 儿童,(2) 评估 PCP 遵守循证指南的情况 用于 ADHD 治疗并检测护理差异并最大程度地减少 ML 模型中的相关偏差,(3) 确定优先级 质量改进干预措施旨在改善多动症护理并减少家庭和家庭之间的差异 临床医生利益相关者认为这与 NIMH 的战略计划是可行的、可接受的且重要的。 提案将 (1) 加强利益相关者之间的合作,不断改进基于证据的 初级保健机构的实践,(2) 确定计划的 PCP 和系统级质量目标并确定优先顺序 旨在标准化多动症护理和减少差异的改进干预措施,以及(3)应用新颖的 为未来的高质量多动症护理提供实时反馈和持续监控的技术。 R01 资助,Bannett 博士将在全国儿科网络中交叉验证制定的质量措施 医疗保健系统,同时实施数据驱动的质量改进干预措施。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of Speech-Language Delay in the Primary Care Setting: An Electronic Health Record Investigation.
初级保健环境中言语延迟的检测:电子健康记录调查。
  • DOI:
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frelinger, Catherine;Gardner, Rebecca M;Huffman, Lynne C;Whitgob, Emily E;Feldman, Heidi M;Bannett, Yair
  • 通讯作者:
    Bannett, Yair
Measuring quality-of-care in treatment of young children with attention-deficit/hyperactivity disorder using pre-trained language models.
使用预先训练的语言模型衡量治疗患有注意力缺陷/多动症的幼儿的护理质量。
  • DOI:
  • 发表时间:
    2024-04-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pillai, Malvika;Posada, Jose;Gardner, Rebecca M;Hernandez;Bannett, Yair
  • 通讯作者:
    Bannett, Yair
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yair Bannett其他文献

Yair Bannett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yair Bannett', 18)}}的其他基金

Novel Quality Measures for Primary Care Management of Attention-Deficit/Hyperactivity Disorder
注意力缺陷/多动障碍初级保健管理的新质量措施
  • 批准号:
    10525048
  • 财政年份:
    2022
  • 资助金额:
    $ 19.41万
  • 项目类别:

相似国自然基金

基于增广拉格朗日函数的加速分裂算法及其应用研究
  • 批准号:
    12371300
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
  • 批准号:
    82304065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
  • 批准号:
    32372384
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
  • 批准号:
    62302265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
  • 批准号:
    82360529
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Prediction of nearest neighbor parameters for folding RNAs with modified nucleotides
预测具有修饰核苷酸的折叠 RNA 的最近邻参数
  • 批准号:
    10576175
  • 财政年份:
    2023
  • 资助金额:
    $ 19.41万
  • 项目类别:
University of Minnesota Clinical and Translational Science Institute (UMN CTSI)
明尼苏达大学临床与转化科学研究所 (UMN CTSI)
  • 批准号:
    10763967
  • 财政年份:
    2023
  • 资助金额:
    $ 19.41万
  • 项目类别:
Mid-Career Mentoring Award For Patient-Oriented Research in Frailty and Health Outcomes
职业生涯中期指导奖,表彰以患者为导向的虚弱和健康结果研究
  • 批准号:
    10651807
  • 财政年份:
    2022
  • 资助金额:
    $ 19.41万
  • 项目类别:
Improving alcohol and substance use care access, outcomes, and equity during the reproductive years: A Type 1 Hybrid Trial in Family Planning Clinics
改善育龄期酒精和药物滥用护理的获取、结果和公平性:计划生育诊所的 1 类混合试验
  • 批准号:
    10706526
  • 财政年份:
    2022
  • 资助金额:
    $ 19.41万
  • 项目类别:
Stagewise Implementation-To-Target- Medications for Addiction Treatment (SITT-MAT)
分阶段实施成瘾治疗目标药物 (SITT-MAT​​)
  • 批准号:
    10689722
  • 财政年份:
    2021
  • 资助金额:
    $ 19.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了