Digital data streams and machine learning for real-time modeling of vaccine-preventable infectious diseases
用于疫苗可预防传染病实时建模的数字数据流和机器学习
基本信息
- 批准号:10686942
- 负责人:
- 金额:$ 44.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBehaviorBehavioralCOVID-19 pandemicCollaborationsCommunicable DiseasesDataDecision MakingDevelopmentDiseaseDisease OutbreaksEpidemicEpidemiologyGrowthHealth behaviorHumanIndividualInstitutionMachine LearningMeaslesMeasurementMeasuresModelingMonitorNatural Language ProcessingNaturePolicy MakerPublic HealthReproductionResearchResearch PersonnelSystemTimeUnited StatesVaccinesanalytical toolcommunity buildingdata streamsdigitalimprovednewsreal time modelreal time monitoringrecruitsocial mediavaccine hesitancyvirtual laboratory
项目摘要
PROJECT SUMMARY/ABSTRACT
Over the last 30 years, a new field––known as computational epidemiology (comp epi)––has emerged at the
intersection of digital data streams (e.g., news and social media, search query, and mobility data), machine
learning (e.g., nonlinear optimization, natural language processing, and agent-based modeling), and public
health crises. Due to the ongoing COVID-19 pandemic, as well as other vaccine-preventable diseases (e.g.,
measles) that have re-emerged in the United States due to vaccine hesitancy, comp epi has shifted part of its
focus as a field to improving public health decision-making during outbreaks and epidemics of vaccine-
preventable disease. In this proposal, we present four foundational challenges within the context of vaccine-
preventable disease research and comp epi more broadly. While the first three of these challenges are more
conventionally scientific in nature, the fourth involves scientific community-building: (1) estimating the time-
varying transmissibility (i.e., the effective reproduction number, REff) of a given vaccine-preventable infectious
disease; (2) real-time monitoring and measurement of health behaviors that impact disease transmissibility
(e.g., vaccine hesitancy, mobility, etc.); (3) forecasting of vaccine-preventable outbreaks and epidemics as a
function of individual health behaviors; and (4) recruitment of new scholars to the yet-insular field of comp epi.
To address these challenges, we propose the development of (1) a meta-analytical tool for ensemble
estimation of REff across multiple research groups; (2) a surveillance system to monitor vaccine hesitancy and
an inference system to produce more representative measures for human mobility; (3) a generalizable agent-
based model for epidemic forecasting that features behavioral parameters, as informed by the aforementioned
surveillance and inference systems; and (4) a cross-institutional virtual laboratory for comp epi scholars to
collaborate on vaccine-preventable disease research all around the world. By addressing the first three
challenges, we hope to help clinicians and public health policymakers make data-informed decisions during
vaccine-preventable crises while simultaneously providing opportunities for other public health researchers to
augment their own efforts in transmissibility estimation and epidemic forecasting by harnessing expected
products from our proposed research. Meanwhile, by addressing the fourth challenge, we hope to help new
scholars–-particularly those from under-represented backgrounds––form meaningful collaborations both with
pioneers in comp epi and with each other, while simultaneously promoting growth and diversification of the
field as we move forward.
项目概要/摘要
在过去的 30 年里,一个新的领域——被称为计算流行病学 (comp epi)——在医学界出现。
数字数据流(例如新闻和社交媒体、搜索查询和移动数据)的交叉点、机器
学习(例如非线性优化、自然语言处理和基于代理的建模)和公共
由于持续的 COVID-19 大流行以及其他疫苗可预防的疾病(例如,
由于对疫苗犹豫不决而在美国重新出现的麻疹病毒,comp epi 已转移其部分
重点作为在疫苗爆发和流行期间改善公共卫生决策的领域
在本提案中,我们提出了疫苗背景下的四个基本挑战:
可预防疾病的研究和更广泛的比较,而前三个挑战则更为广泛。
本质上是传统科学,第四个涉及科学社区建设:(1)估计时间-
给定疫苗可预防的传染病的不同传播率(即有效繁殖数 REff)
(2)实时监测和测量影响疾病传播能力的健康行为
(例如,疫苗犹豫、流动性等);(3)预测疫苗可预防的疫情和流行病
个人健康行为的功能;(4) 招募新学者进入比较孤立的领域。
为了应对这些挑战,我们建议开发(1)集成分析工具
对多个研究小组的 REff 进行估计;(2) 监测疫苗犹豫的监测系统;
一个推理系统,用于产生更具代表性的人类流动性度量;(3)一个可推广的代理——
基于行为参数的流行病预测模型,如上述所述
监视和推理系统;(4) 供比较外延学者使用的跨机构虚拟实验室
通过解决前三个问题,在世界各地合作开展疫苗可预防疾病的研究。
挑战,我们希望帮助前沿和公共卫生决策者在疫情期间做出基于数据的决策
疫苗可预防的危机,同时为其他公共卫生研究人员提供机会
通过利用预期的信息来加强自己在传播性估计和流行病预测方面的努力
同时,我们希望通过解决第四个挑战来帮助新的产品。
学者们——尤其是那些来自代表性不足背景的学者——与以下组织建立了有意义的合作:
比较外延领域的先驱以及彼此之间的合作,同时促进该领域的增长和多元化
当我们前进时的领域。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
US COVID-19 clinical trial leadership gender disparities.
美国 COVID-19 临床试验领导性别差异。
- DOI:
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Sehgal, Neil K R;Brownstein, John S;Majumder, Maimuna S;Tuli, Gaurav
- 通讯作者:Tuli, Gaurav
Association between social vulnerability and place of death during the first 2 years of COVID-19 in Massachusetts.
马萨诸塞州 COVID-19 爆发前两年的社会脆弱性与死亡地点之间的关联。
- DOI:
- 发表时间:2024-02-01
- 期刊:
- 影响因子:6.7
- 作者:Charpignon, Marie;Onofrey, Shauna;Chen, Yea;Rewegan, Ale;Glymour, Medellena Maria;Klevens, R Monina;Majumder, Maimuna Shahnaz
- 通讯作者:Majumder, Maimuna Shahnaz
Evolving Face Mask Guidance During a Pandemic and Potential Harm to Public Perception: Infodemiology Study of Sentiment and Emotion on Twitter.
大流行期间不断变化的口罩指导以及对公众认知的潜在危害:推特上情绪和情绪的信息流行病学研究。
- DOI:
- 发表时间:2023-02-27
- 期刊:
- 影响因子:7.4
- 作者:Ramjee, Divya;Pollack, Catherine C;Charpignon, Marie;Gupta, Shagun;Rivera, Jessica Malaty;El Hayek, Ghinwa;Dunn, Adam G;Desai, Angel N;Majumder, Maimuna S
- 通讯作者:Majumder, Maimuna S
The impact of state paid sick leave policies on weekday workplace mobility during the COVID-19 pandemic.
COVID-19 大流行期间国家带薪病假政策对工作日工作场所流动性的影响。
- DOI:
- 发表时间:2023-02
- 期刊:
- 影响因子:5.2
- 作者:Pollack, C C;Deverakonda, A;Hassan, F;Haque, S;Desai, A N;Majumder, M S
- 通讯作者:Majumder, M S
Modeling vaccination coverage during the 2022 central Ohio measles outbreak: a cross-sectional study.
对 2022 年俄亥俄州中部麻疹爆发期间的疫苗接种覆盖率进行建模:一项横断面研究。
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Martoma, Rosemary A;Washam, Matthew;Martoma, Joshua C;Cori, Anne;Majumder, Maimuna S
- 通讯作者:Majumder, Maimuna S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maimuna Shahnaz Majumder其他文献
Maimuna Shahnaz Majumder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多层级增强B4C/6082Al复合材料背压往复挤压-短时时效界面行为及服役性能提升机理研究
- 批准号:52375329
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
有限注意视角下证券分析师行为及其资本市场后果研究
- 批准号:72302066
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
驾驶行为随机异变下的交通事故风险演化规律解析与建模
- 批准号:52372337
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
锡(铋、铟)氧/硫化物在CO2电还原过程中的重构行为与催化机制研究
- 批准号:52372217
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 44.23万 - 项目类别:
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 44.23万 - 项目类别:
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 44.23万 - 项目类别:
The Role of Ethnic Racial Discrimination on the Development of Anxious Hypervigilance in Latina Youth
民族种族歧视对拉丁裔青少年焦虑过度警觉的影响
- 批准号:
10752122 - 财政年份:2024
- 资助金额:
$ 44.23万 - 项目类别:
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
$ 44.23万 - 项目类别: