Leveraging Multi-Scale Deep Phenotyping and Applied Machine Learning to Predict Senescent Cell Burden in Humans

利用多尺度深度表型分析和应用机器学习来预测人类衰老细胞负担

基本信息

  • 批准号:
    10684954
  • 负责人:
  • 金额:
    $ 30.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-30 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

DATA ANALYSIS CORE - PROJECT SUMMARY Senescent cells (SCs) are long-lived inflammatory cells that ensue from the exposure to certain cellular stressors. These cells have been found to increase with aging and in many age-related chronic diseases and some studies have mechanistically linked SC function with a variety of disease phenotypes. New therapies targetingSCs (senolytics) can act by transiently disabling anti-apoptotic networks on SCs and causing apoptosis of those SCs within a tissue. In animal models, senolytics can delay, prevent or improve frailty, cardiovascular pathology, neuropsychiatric conditions and liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders, among other clinical phenotypes. Current methods to quantify SC burden in tissues rely on a few canonical markers such as p16, p21, SA-βgal, etc. but their specificity is still debatable and these markers are seldom co-expressed in human tissues. Thus, at present, we lack a complete picture of the estimated SC burden across tissues in humans in health and during aging. Here, we aim to unbiasedly characterize SCs from different human tissues using different technological platforms and advanced analytics to develop at Atlas of SCs in human tissues. Since the accumulation of SCs is thought to precede disease phenotypes, robust diagnostic methods to identify SCs will also enable early detection of those at risk for developing chronic disease. Without robust diagnostics to estimate SC burden in human tissues, (1) assessment of therapies targeting SCs will continue to be a bottleneck in senolytic drug development and (2) chronic disease will continue to be a growing public health concern which will lead to a steady reduction in the populations' health span. In this proposal, we will construct molecular and morphological maps for tissue-resident SCs in humans and create multiple mechanisms to share these results with the scientific community. The Data Analysis Core of the Tissue Mapping Center will harness its ability to unbiasedly profile human tissues and blood to predict the senescent cell burden in humans and create an Atlas of SC biomarkers in tissues. To achieve our goals, our Data Analysis Core will provide pipelines for data processing, algorithms for data analysis, construct and share a map of human SCs in tissues, and general coordination of data through the Consortium Organization and Data Coordination Center (CODCC) and with Cellular Senescence Network (SenNet). We will build, curate, and annotate a SCs atlas across human tissues and implement data sharing and coordinate protocols and analytic pipelines with SenNet. The database will allow users to view and download SCs signatures, and provide a controlled access system for de-identified individual-level single nuclei expression, imaging and proteomic data. This resource will also serve for many additional kinds of analyses throughout the consortium.
数据分析核心 - 项目摘要 衰老细胞 (SC) 是长寿命的炎症细胞,是由于暴露于某些细胞而产生的。 人们发现这些细胞会随着年龄的增长以及许多与年龄相关的慢性疾病而增加。 一些研究将 SC 功能与多种疾病表型建立了机制联系。 靶向 SC(senolytics)可以通过暂时禁用 SC 上的抗凋亡网络并引起细胞凋亡来发挥作用 在动物模型中,senolytics 可以延缓、预防或改善虚弱, 心血管病理学、神经精神疾病和肝脏、肾脏、肌肉骨骼、肺、眼睛、 血液学、代谢和皮肤疾病等临床表型的当前方法。 SC 量化组织负荷依赖于一些经典标记,例如 p16、p21、SA-βgal 等,但它们的 特异性仍然存在争议,并且这些标记物很少在人体组织中共表达,因此,目前,我们。 缺乏对健康状态下和在治疗期间人类组织中估计的 SC 负担的完整了解 在这里,我们的目标是使用不同的技术公正地表征来自不同人体组织的 SC。 自 SC 积累以来,Atlas of SC 在人体组织中开发了平台和高级分析。 被认为先于疾病表型,识别 SC 的强大诊断方法也将能够及早发现 检测那些有患慢性病风险的人,如果没有可靠的诊断来估计 SC 负担。 人体组织,(1) 针对 SC 的治疗评估将继续成为 senolytic 药物的瓶颈 (2) 慢性病将继续成为日益严重的公共卫生问题,这将导致 在这个提案中,我们将构建分子和健康寿命的稳步缩短。 人类组织驻留 SC 的形态图,并创建多种机制来共享这些图 组织绘图中心的数据分析核心将利用其成果。 能够公正地分析人体组织和血液,以预测人体衰老细胞负担并创造 为了实现我们的目标,我们的数据分析核心将为组织中的 SC 生物标志物提供管道。 数据处理、数据分析算法、构建和共享组织中人类 SC 的图谱以及一般知识 通过联盟组织和数据协调中心 (CODCC) 以及与 我们将构建、管理和注释跨人体组织的细胞衰老网络 (SenNet)。 并与 SenNet 数据库实现数据共享并协调协议和分析管道。 允许用户查看和下载SC签名,并为去识别化提供受控访问系统 个体水平的单核表达、成像和蛋白质组数据该资源也将为许多人服务。 整个联盟的其他类型的分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Furman其他文献

David Furman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Furman', 18)}}的其他基金

Identification of blood biomarkers predictive of organ aging
鉴定预测器官衰老的血液生物标志物
  • 批准号:
    10777065
  • 财政年份:
    2023
  • 资助金额:
    $ 30.24万
  • 项目类别:
Leveraging Multi-Scale Deep Phenotyping and Applied Machine Learning to Predict Senescent Cell Burden in Humans
利用多尺度深度表型分析和应用机器学习来预测人类衰老细胞负担
  • 批准号:
    10376498
  • 财政年份:
    2021
  • 资助金额:
    $ 30.24万
  • 项目类别:

相似国自然基金

角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
  • 批准号:
    82373460
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
塑料光老化介导的微(纳)塑料形成和光解产物释放对雄性生殖内分泌的干扰研究
  • 批准号:
    22376195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
  • 批准号:
    42377282
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
  • 批准号:
    12302265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
苯乙烯-丁二烯共聚物力化学老化的自由基捕获光环加成协同修复机制
  • 批准号:
    22303065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Sex-differences in HIV persistence and Immune Dynamics during Reproductive Aging
生殖衰老过程中艾滋病毒持久性和免疫动态的性别差异
  • 批准号:
    10838316
  • 财政年份:
    2023
  • 资助金额:
    $ 30.24万
  • 项目类别:
CRCNS: Deep Learning to Discover Neurovascular Disruptions in Alzheimer's Disease
CRCNS:深度学习发现阿尔茨海默病的神经血管破坏
  • 批准号:
    10831259
  • 财政年份:
    2023
  • 资助金额:
    $ 30.24万
  • 项目类别:
Analysis of Somatic Mutations in Longitudinal Whole-genome Sequencing Data
纵向全基因组测序数据中的体细胞突变分析
  • 批准号:
    10836613
  • 财政年份:
    2023
  • 资助金额:
    $ 30.24万
  • 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 30.24万
  • 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
  • 批准号:
    10760690
  • 财政年份:
    2023
  • 资助金额:
    $ 30.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了