ADAPTIVE MOTIF-BASED CONTROL (AMBC): A FUNDAMENTALLY NEW APPROACH TO AUTOMATED TREATMENT OPTIMIZATION FOR TYPE 1 DIABETES
自适应基序控制 (AMBC):1 型糖尿病自动优化治疗的全新方法
基本信息
- 批准号:10684819
- 负责人:
- 金额:$ 68.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-17 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAlgorithmsArea Under CurveArtificial IntelligenceArtificial PancreasCellular PhoneChildClassificationClinicalClinical TrialsCodeColorContinuous Glucose MonitorCross-Over TrialsCrossover DesignDataData ScienceDatabasesDevelopmentDiabetes MellitusEnrollmentEuropeEuropeanExerciseGlucoseGoalsHealthHealth PersonnelHourHybridsHyperglycemiaHypoglycemiaIncidenceIndividualInferiorInjectionsInsulinInsulin Infusion SystemsInsulin-Dependent Diabetes MellitusLearningLibrariesMeasuresMedicineMetabolicMethodsModalityMonitorNew EnglandNon-Insulin-Dependent Diabetes MellitusOutcomeParticipantPatient EducationPatternPattern RecognitionPersonsPhysical activityPilot ProjectsPopulationPopulation DatabaseProcessProliferatingPropertyProtocols documentationPublishingRandomizedRecording of previous eventsRunningStructureSystemTechnologyTestingTextTimeadvanced systemclinical practiceclinical translationcontrol trialdata librarydata spacedeep neural networkdesignefficacy evaluationexperienceglycemic controlimprovedinnovationnew technologynext generationnovelnovel strategiesprocess optimizationsubcutaneoustooltreatment optimizationtrial comparingtrial enrollmentvirtual
项目摘要
PROJECT SUMMARY
Adaptive Motif-Based Control (AMBC): A Fundamentally New Approach to Automated Treatment
Optimization for Type 1 Diabetes
Automated Insulin Delivery (AID) has transitioned to the clinical practice and one of the most advanced systems
to date –Control-IQ (Tandem, Inc.)– is based on the UVA-AID, developed and tested by our team. Following two
pivotal trial in adults and children with type 1 diabetes (T1D), both published in the New England J of Medicine,
the system was cleared by the FDA and European regulatory agencies, and is now in use worldwide. With this
clinical translation now accomplished, our academic objective is to design and test next-generation AID solutions.
The key innovative concept behind the new Adaptive Motif-Based Control (AMBC) class of AID algorithms
proposed here, is the ability to learn from a user’s past glycemic-control patterns and from population patterns,
and optimize this user’s treatment in real time; thus, unlike any other AID system, the AMBC will utilize both a
person’s own history and the history of others, to forecast glycemic changes and adapt AID action accordingly.
To achieve its goals, the AMBC will employ: (i) a newly discovered fundamental structure underlying the multitude
of possible daily continuous glucose monitoring (CGM) profiles in diabetes, which allows classification of these
profiles into a finite number of basic “motifs”, and (ii) a new Adaptation-to-Profile treatment optimization process.
To test the AMBC, we propose a pilot study, followed by a randomized cross-over trial enrolling 90 participants
with T1D and Control-IQ experience, to compare the UVA-AID (as built in Control-IQ) to 3 treatment modalities:
AMBC with meal and exercise announcements; AMBC-A without meal or exercise announcements, i.e. a “full
closed-loop,” and an intermediate AMBC-EA which will have meal but no exercise announcement. Participants
will be randomized to two groups following different sequences of treatment modalities: UVA-AID-->AMBC-
A-->AMBC-EA-->AMBC and AMBC-->AMBC-EA-->AMBC-A-->UVA-AID. Each treatment modality will continue for
5 weeks. This time-tested design enables four crossover comparisons, which will test the following hypotheses:
(1) AMBC with meal/exercise announcements will be superior to UVA-AID in terms of time in the range 70-
180mg/dl and reduced incidence of hypoglycemia (measured by CGM), and technology acceptance;
(2) AMBC-A without meal/exercise announcements will be non-inferior to UVA-AID in terms of time >180mg/dL
during the day, incidence of hypoglycemia during and after exercise, and postprandial glucose variability;
(3) Deescalating AMBC-->AMBC-EA-->AMBC-A vs escalating AMBC-A-->AMBC-EA-->AMBC deployment of
meal and exercise announcements will have no influence on the outcome within each treatment modality.
Overall, we affirm that reliable technology has been developed and sufficient data accumulated to warrant the
development of a new class of AID algorithms – AMBC – which is expected to become the first AID system
learning from a user’s own historical metabolic patterns and from the patterns of others structured in a new
relational data library. We view the AMBC as a paradigm for transition from hybrid to full (no announcements)
AID, but do not claim that the AMBC is a full closed-loop system.
项目概要
基于自适应基序的控制(AMBC):一种全新的自动化治疗方法
1 型糖尿病的优化
自动胰岛素输送 (AID) 已进入临床实践,是最先进的系统之一
迄今为止,Control-IQ(Tandem, Inc.)是基于 UVA-AID,由我们的以下两个团队开发和测试的。
针对成人和儿童 1 型糖尿病 (T1D) 的关键试验,均发表在《新英格兰医学杂志》上,
该系统已获得 FDA 和欧洲监管机构的批准,目前已在全球范围内使用。
临床转化现已完成,我们的学术目标是设计和测试下一代 AID 解决方案。
新型自适应基序控制 (AMBC) 类 AID 算法背后的关键创新概念
这里提出的是从用户过去的血糖控制模式和人群模式中学习的能力,
并实时优化该用户的治疗;因此,与任何其他 AID 系统不同,AMBC 将同时利用
一个人自己的病史和他人的病史,以预测血糖变化并相应地调整援助行动。
为了实现其目标,AMBC 将采用:(i) 新发现的大众基础结构
糖尿病中可能的每日连续血糖监测 (CGM) 概况,从而可以对这些概况进行分类
将轮廓分解为有限数量的基本“基序”,以及(ii)新的适应轮廓治疗优化过程。
为了测试 AMBC,我们提出了一项试点研究,随后进行了一项招募 90 名参与者的随机交叉试验
凭借 T1D 和 Control-IQ 经验,将 UVA-AID(Control-IQ 内置)与 3 种治疗方式进行比较:
AMBC 有进餐和锻炼通知;AMBC-A 没有进餐或锻炼通知,即“完整”
闭环”,以及中间 AMBC-EA,参与者将吃饭但没有行权公告。
将被随机分为两组,遵循不同的治疗方式顺序:UVA-AID-->AMBC-
A-->AMBC-EA-->AMBC 和 AMBC-->AMBC-EA-->AMBC-A-->UVA-AID 每种治疗方式将继续。
这个经过时间考验的设计可以进行四次交叉比较,这将测试以下假设:
(1) 带有膳食/运动通知的 AMBC 在时间方面优于 UVA-AID,范围为 70-
180mg/dl,降低低血糖发生率(通过 CGM 测量),以及技术接受度;
(2) AMBC-A(不含进餐/运动公告)在时间方面不劣于 UVA-AID >180mg/dL
白天、运动期间和运动后低血糖的发生率以及餐后血糖变异性;
(3) 降级 AMBC-->AMBC-EA-->AMBC-A 与升级 AMBC-A-->AMBC-EA-->AMBC 部署
膳食和运动公告不会对每种治疗方式的结果产生影响。
总体而言,我们确认已经开发出可靠的技术并积累了足够的数据来保证
开发一类新型 AID 算法 – AMBC – 预计将成为第一个 AID 系统
从用户自己的历史代谢模式以及以新的方式构建的其他人的模式中学习
我们将 AMBC 视为从混合型数据库过渡到完整型数据库的范例(未发布公告)
AID,但不声称AMBC是一个全闭环系统。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing the UVA/Padova Type 1 Diabetes Simulator: Modeling, Validation, Refinements, and Utility.
开发 UVA/Padova 1 型糖尿病模拟器:建模、验证、改进和实用。
- DOI:
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Cobelli, Claudio;Kovatchev, Boris
- 通讯作者:Kovatchev, Boris
Neural-Net Artificial Pancreas: A Randomized Crossover Trial of a First-in-Class Automated Insulin Delivery Algorithm.
神经网络人工胰腺:一流的自动胰岛素输送算法的随机交叉试验。
- DOI:
- 发表时间:2024-01-26
- 期刊:
- 影响因子:5.4
- 作者:Kovatchev, Boris P;Frasquet, Alberto Castillo;Pryor, Elliott Carroll;Kollar, Laura;Barnett, Charlotte;DeBoer, Mark D;Brown, Sue A
- 通讯作者:Brown, Sue A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUE A BROWN其他文献
SUE A BROWN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUE A BROWN', 18)}}的其他基金
Insulin-Glucose-Glucagon Network: Defining a type 1 diabetes progression model
胰岛素-葡萄糖-胰高血糖素网络:定义 1 型糖尿病进展模型
- 批准号:
8974151 - 财政年份:2015
- 资助金额:
$ 68.56万 - 项目类别:
HORMONAL DETERMINANTS OF BONE TURNOVER DURING LACTATION IN POSTPARTUM WOMEN
产后女性哺乳期间骨转换的激素决定因素
- 批准号:
8167163 - 财政年份:2010
- 资助金额:
$ 68.56万 - 项目类别:
HORMONAL DETERMINANTS OF BONE TURNOVER DURING LACTATION IN POSTPARTUM WOMEN
产后女性哺乳期间骨转换的激素决定因素
- 批准号:
7951483 - 财政年份:2009
- 资助金额:
$ 68.56万 - 项目类别:
Biobehavioral Human-Machine Co-adaptation of the Artificial Pancreas
人工胰腺的生物行为人机协同适应
- 批准号:
10381727 - 财政年份:2009
- 资助金额:
$ 68.56万 - 项目类别:
Biobehavioral Human-Machine Co-adaptation of the Artificial Pancreas
人工胰腺的生物行为人机协同适应
- 批准号:
10613967 - 财政年份:2009
- 资助金额:
$ 68.56万 - 项目类别:
Biobehavioral Human-Machine Co-adaptation of the Artificial Pancreas
人工胰腺的生物行为人机协同适应
- 批准号:
10200019 - 财政年份:2009
- 资助金额:
$ 68.56万 - 项目类别:
HORMONAL DETERMINANTS OF BONE TURNOVER DURING LACTATION IN POSTPARTUM WOMEN
产后女性哺乳期间骨转换的激素决定因素
- 批准号:
7718575 - 财政年份:2008
- 资助金额:
$ 68.56万 - 项目类别:
HORMONAL DETERMINANTS OF BONE TURNOVER DURING LACTATION IN POSTPARTUM WOMEN
产后女性哺乳期间骨转换的激素决定因素
- 批准号:
7606719 - 财政年份:2007
- 资助金额:
$ 68.56万 - 项目类别:
Bone Accrual and Hormones in Response to Lactation
哺乳期的骨质增生和激素
- 批准号:
6816931 - 财政年份:2004
- 资助金额:
$ 68.56万 - 项目类别:
Bone Accrual and Hormones in Response to Lactation
哺乳期的骨质增生和激素
- 批准号:
7172044 - 财政年份:2004
- 资助金额:
$ 68.56万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
Pilot Testing Implementation of Suicide Risk Prediction Algorithms to Support Suicide Prevention in Primary Care
试点测试自杀风险预测算法的实施,以支持初级保健中的自杀预防
- 批准号:
10648772 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别: