Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC

BACPAC 先进、更快的定量成像技术研究网站

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Disorders of the spine have a tremendous impact on society; both physically through the morbidity of afflicted individuals, and financially, through lost productivity and increased health care costs. Despite the significance of this problem, the etiology of symptoms is diverse and unclear in many patients, and there are few reliable methods by which to prospectively determine the appropriate course of patient care and to objectively evaluate the effectiveness of various interventions. Challenges contributing to this major healthcare dilemma include numerous sources of back pain, difficulty in visualization of responsible tissues using any single imaging technique and difficulty in the localization of pain and contributing molecular processes. Magnetic Resonance imaging (MR) has been used to characterize disc, muscle, nerves and Positron Emission Tomography (PET) has been used to study bone turnover, and facet disease in subjects with lower back pain. The research and tool development proposed in this UH2/UH3 takes the critical next step in the clinical translation of faster, quantitative magnetic resonance imaging (MR) of patients with lower back pain. New optimized techniques and patient studies are required to investigate its clinical potential for quantitatively characterizing the tissues implicated in lower back pain, and objective evaluation of pain. Our proposed multidisciplinary Technology Research Site (Tech Site) of the NIH Back Pain Consortium (BACPAC) will develop Phase IV TTMs (Research and Development for Technology Optimization) to leverage two key technical advancements – development of machine learning based faster MR acquisition methods, and machine learning for image segmentation and extraction of objective disease related features from images. We will develop, validate, and deploy end-to-end deep learning-based technologies (TTMs) for accelerated image reconstruction, tissue segmentation, detection of spinal degeneration, to facilitate automated, robust assessment of structure-function relationships between spine characteristics, neurocognitive pain response, and patient reported outcomes. To accomplish this important project, we have assembled a highly-experienced multidisciplinary research team combining extensive expertise MR bioengineering, advanced MRI data analysis, radiology, neuroscience, neurosurgery, orthopedic surgery, multi-dimensional analytics and have existing research agreements with industry. The research facilities and environment include the clinical and research infrastructure required for successful completion of the proposed translational project. The team has disseminated tools before to academia, worked closely with industry and are motivated to totally work with BACPAC as the plans of the consortium evolve.
项目概要/摘要 脊柱疾病对社会产生巨大影响,无论是在身体上还是在患病率上。 尽管意义重大,但在个人和经济上,生产力下降和医疗保健费用增加。 对于这个问题,许多患者症状的病因多种多样且不清楚,而且很少有可靠的 前瞻性地确定适当的患者护理过程并客观评估的方法 导致这一重大医疗保健困境的挑战包括: 背痛的来源众多,使用任何单一成像难以可视化相关组织 疼痛定位和分子过程的技术和困难。 成像 (MR) 已用于表征椎间盘、肌肉、神经和正电子发射断层扫描 (PET) 已用于研究腰痛受试者的骨转换和小​​关节疾病。 UH2/UH3 中提出的研究和工具开发在临床上迈出了关键的下一步 对腰痛患者进行更快的定量磁共振成像 (MR) 翻译 新。 需要优化技术和患者研究来定量研究其临床潜力 表征与腰痛有关的组织,并对疼痛进行客观评估。 NIH 背痛联盟 (BACPAC) 的多学科技术研究站点(技术站点)将 开发第四阶段 TTM(技术优化研究与开发)以利用两个关键 技术进步 – 开发基于机器学习的更快 MR 采集方法,以及 用于图像分割和从图像中提取客观疾病相关特征的机器学习。 将开发、验证和部署用于加速图像的端到端深度学习技术(TTM) 重建、组织分割、脊柱退变检测,以促进自动化、鲁棒性 评估脊柱特征、神经认知疼痛反应之间的结构-功能关系, 为了完成这个重要的项目,我们组建了一支经验丰富的团队。 多学科研究团队广泛结合 MR 生物工程专业知识、先进 MRI 数据 分析、放射学、神经科学、神经外科、骨科手术、多维分析 与工业界现有的研究协议。研究设施和环境包括临床和环境。 该团队拥有成功完成拟议转化项目所需的研究基础设施。 之前向学术界传播了工具,与工业界密切合作,并有动力与 BACPAC 随着联盟计划的发展而变化。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lumbar intervertebral disc characterization through quantitative MRI analysis: An automatic voxel-based relaxometry approach.
通过定量 MRI 分析表征腰椎间盘:一种基于体素的自动松弛测量方法。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Iriondo, Claudia;Pedoia, Valentina;Majumdar, Sharmila
  • 通讯作者:
    Majumdar, Sharmila
Automatic detection and voxel-wise mapping of lumbar spine Modic changes with deep learning.
通过深度学习自动检测腰椎 Modic 变化并进行体素映射。
  • DOI:
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Gao, Kenneth T;Tibrewala, Radhika;Hess, Madeline;Bharadwaj, Upasana U;Inamdar, Gaurav;Link, Thomas M;Chin, Cynthia T;Pedoia, Valentina;Majumdar, Sharmila
  • 通讯作者:
    Majumdar, Sharmila
Institution-wide shape analysis of 3D spinal curvature and global alignment parameters.
对 3D 脊柱曲率和全局对齐参数进行机构范围的形状分析。
  • DOI:
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iriondo, Claudia;Mehany, Sarah;Shah, Rutwik;Bharadwaj, Upasana;Bahroos, Emma;Chin, Cynthia;Diab, Mohammad;Pedoia, Valentina;Majumdar, Sharmila
  • 通讯作者:
    Majumdar, Sharmila
Evaluation of 2 Novel Ratio-Based Metrics for Lumbar Spinal Stenosis.
两种基于比率的新型腰椎管狭窄指标的评估。
  • DOI:
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bharadwaj, U U;Ben;Huang, J;Pedoia, V;Chou, D;Majumdar, S;Link, T M;Chin, C T
  • 通讯作者:
    Chin, C T
The Back Pain Consortium (BACPAC) Research Program: Structure, Research Priorities, and Methods.
背痛联盟​​ (BACPAC) 研究计划:结构、研究重点和方法。
  • DOI:
  • 发表时间:
    2023-08-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mauck, Matthew C;Lotz, Jeffrey;Psioda, Matthew A;Carey, Timothy S;Clauw, Daniel J;Majumdar, Sharmila;Marras, William S;Vo, Nam;Aylward, Ayleen;Hoffmeyer, Anna;Zheng, Patricia;Ivanova, Anastasia;McCumber, Micah;Carson, Christiane;Anstrom, Kev
  • 通讯作者:
    Anstrom, Kev
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharmila Majumdar其他文献

Sharmila Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sharmila Majumdar', 18)}}的其他基金

Simultaneous Imaging of Tissue Biochemistry and Metabolism associated with Biomechanics in Patella Femoral Joint Osteoarthritis
髌股关节骨关节炎与生物力学相关的组织生物化学和代谢的同步成像
  • 批准号:
    10592370
  • 财政年份:
    2022
  • 资助金额:
    $ 121.01万
  • 项目类别:
Simultaneous Imaging of Tissue Biochemistry and Metabolism associated with Biomechanics in Patella Femoral Joint Osteoarthritis
髌股关节骨关节炎与生物力学相关的组织生物化学和代谢的同步成像
  • 批准号:
    10443016
  • 财政年份:
    2022
  • 资助金额:
    $ 121.01万
  • 项目类别:
Simultaneous Imaging of Tissue Biochemistry and Metabolism associated with Biomechanics in Patella Femoral Joint Osteoarthritis
髌股关节骨关节炎与生物力学相关的组织生物化学和代谢的同步成像
  • 批准号:
    10792426
  • 财政年份:
    2022
  • 资助金额:
    $ 121.01万
  • 项目类别:
Ultra-Fast Knee MRI with Deep Learning
具有深度学习功能的超快速膝关节 MRI
  • 批准号:
    10596548
  • 财政年份:
    2021
  • 资助金额:
    $ 121.01万
  • 项目类别:
Ultra-Fast Knee MRI with Deep Learning
具有深度学习功能的超快速膝关节 MRI
  • 批准号:
    10376339
  • 财政年份:
    2021
  • 资助金额:
    $ 121.01万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    10268200
  • 财政年份:
    2019
  • 资助金额:
    $ 121.01万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    10462624
  • 财政年份:
    2019
  • 资助金额:
    $ 121.01万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    10304082
  • 财政年份:
    2019
  • 资助金额:
    $ 121.01万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    10214771
  • 财政年份:
    2019
  • 资助金额:
    $ 121.01万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    9897929
  • 财政年份:
    2019
  • 资助金额:
    $ 121.01万
  • 项目类别:

相似国自然基金

面向电力储能集群系统的加速退化试验与寿命评估方法研究
  • 批准号:
    62303293
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向计算密集型应用的新型计算范式及其加速器关键技术
  • 批准号:
    62374108
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
  • 批准号:
    62304037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
极端光场条件下正电子束的产生、加速和操控研究
  • 批准号:
    12375244
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
  • 批准号:
    10677409
  • 财政年份:
    2023
  • 资助金额:
    $ 121.01万
  • 项目类别:
A First-in-class Topical Immunoregulatory Therapeutic for Psoriasis
一流的牛皮癣局部免疫调节疗法
  • 批准号:
    10820331
  • 财政年份:
    2023
  • 资助金额:
    $ 121.01万
  • 项目类别:
Identifying and understanding the role of repeat RNAs and RAN proteins in Alzheimer's disease
识别和理解重复 RNA 和 RAN 蛋白在阿尔茨海默病中的作用
  • 批准号:
    10833734
  • 财政年份:
    2023
  • 资助金额:
    $ 121.01万
  • 项目类别:
Aortic stiffness, wave reflection, and cerebrovascular flow pulsatility: relations with brain small vessel disease and cognitive function in a middle-aged cohort
主动脉僵硬度、波反射和脑血管血流搏动:与中年队列中脑小血管疾病和认知功能的关系
  • 批准号:
    10662819
  • 财政年份:
    2023
  • 资助金额:
    $ 121.01万
  • 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 121.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了