Developing a clinical decision support tool for the identification, diagnosis, and treatment of critical illness in hospitalized patients
开发用于住院患者危重疾病识别、诊断和治疗的临床决策支持工具
基本信息
- 批准号:10683402
- 负责人:
- 金额:$ 56.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Respiratory Distress SyndromeAdmission activityAdultAlgorithmsAntibioticsCaringCessation of lifeClinicalComplexCongestive Heart FailureCritical CareCritical IllnessDataData SetDecision MakingDeteriorationDiagnosisDiagnosticEarly DiagnosisEffectivenessElectronic Health RecordEtiologyEventFatigueGoalsHealthHealth systemHospital MortalityHospitalizationHospitalsHourHumanIntensive CareLaboratoriesLeadLearningLifeMachine LearningManualsMedicalMedical ErrorsMissionModelingMorbidity - disease rateNatural Language ProcessingOperative Surgical ProceduresOutcomePatient-Focused OutcomesPatientsPrediction of Response to TherapyProviderPsychological reinforcementPublic HealthRecommendationResearchResourcesRiskRisk FactorsSepsisSourceStructureTestingTimeTreesUnited States National Institutes of HealthWorkcase-basedclinical decision supportclinical diagnosisclinical practiceclinical riskcommon treatmentconvolutional neural networkcost outcomesdesigndiagnostic accuracydisabilitydiscrete timeexperiencegraphical user interfacehigh riskimprovedimproved outcomeinnovationiterative designlearning strategymachine learning frameworkmachine learning methodmachine learning modelmortalitymultitasknoveloptimal treatmentspersonalized carepersonalized interventionpredictive modelingpreventable deathrecurrent neural networksatisfactionsimulationstructured datasupport toolstooltransfer learninguser centered designward
项目摘要
PROJECT SUMMARY
Up to 5% of hospitalized adult patients on the medical-surgical wards develop clinical deterioration requiring
intensive care. Medical errors are common before deterioration events, including delays and misjudgments in
identification, diagnosis, and treatment, and these errors lead to increased morbidity and mortality. Therefore, it
is critically important to improve the care of high-risk ward patients to decrease preventable in-hospital deaths.
The current paradigm for attempting to decrease mortality from deterioration has several limitations. First,
most early warning scores designed to identify high-risk patients are based only on vital signs and have limited
accuracy. Clinical notes are an underutilized, rich source of information comprising nearly 80% of electronic
health record (EHR) data. Natural language processing (NLP) can extract important risk factors from clinical
notes for machine learning models to improve accuracy over existing tools. Second, current early warning scores
only tell clinicians that a patient is at high risk but provide no information regarding what clinical condition is
causing a patient’s deterioration. This leads to diagnostic and treatment errors, which results in worse patient
outcomes. Developing tools to enhance diagnostic accuracy for high-risk ward patients could lead to fewer
medical errors, decreased costs, and improved outcomes. Third, the initial treatment decisions for deteriorating
patients are made by clinicians with limited experience caring for critically ill patients, which can result in delays
of potentially life-saving therapies. By utilizing a large, granular, multicenter dataset, algorithms to predict the
treatments a patient should receive can be developed, resulting in early, targeted, potentially life-saving therapy.
The long-term goal is to develop and implement clinically useful decision support tools to decrease
preventable death from deterioration. The overall objective of this project is to develop a clinical decision support
tool for the identification, diagnosis, and treatment of patients at high risk of deterioration. This objective will be
pursued in the following three specific aims: 1) Develop machine learning models to identify patients at high risk
of deterioration using both structured data and unstructured clinical notes; 2) Develop models to predict the
diagnosis that is causing the deterioration event and the potentially life-saving treatments that should be provided
to high-risk patients; 3) Develop a clinical decision support tool with a graphical user interface incorporating the
models from Aims 1 and 2 via user-centered design principles and then test its effectiveness, efficiency, and
user satisfaction in a case-based simulation study. This research is innovative because it will utilize NLP,
reinforcement learning, interpretable machine learning, and multi-task transfer learning approaches. The
proposed research is significant because it will provide clinicians with powerful new tools that can be
implemented in the EHR to identify, diagnose, and make treatment recommendations for high-risk patients. This
will result in the delivery of early, personalized care to decrease preventable death from deterioration.
项目概要
内外科病房中多达 5% 的住院成年患者出现临床恶化,需要接受治疗
重症监护在病情恶化之前很常见,包括延误和误判。
识别、诊断和治疗,这些错误导致发病率和死亡率增加。
对于改善高危病房患者的护理以减少可预防的院内死亡至关重要。
目前试图降低恶化死亡率的模式有几个局限性。
大多数旨在识别高危患者的早期预警评分仅基于生命体征,并且作用有限
临床记录是一种未被充分利用的丰富信息源,占电子信息的近 80%。
健康记录(EHR)数据自然语言处理(NLP)可以从临床中提取重要的风险因素。
机器学习模型的注释,以提高现有工具的准确性。第二,当前的预警分数。
只告知患者处于高风险状态,但不提供有关临床状况的信息
导致患者病情恶化,这会导致诊断和治疗错误,从而导致患者病情恶化。
开发工具来提高高危病房患者的诊断准确性可能会减少结果。
第三,针对病情恶化的初步治疗决策。
患者是由护理危重患者经验有限的教区居民提供的,这可能会导致延误
通过利用大型、精细、多中心数据集和算法来预测可能挽救生命的疗法。
可以制定患者应接受的治疗方法,从而实现早期、有针对性、可能挽救生命的治疗。
长期目标是开发和实施临床上有用的决策支持工具,以减少
该项目的总体目标是开发临床决策支持。
该目标将是识别、诊断和治疗病情恶化高风险患者的工具。
追求以下三个具体目标:1)开发机器学习模型来识别高风险患者
使用结构化数据和非结构化临床记录来预测恶化情况;2) 开发模型来预测恶化情况;
导致恶化事件的诊断以及应提供的可能挽救生命的治疗
3)开发具有图形用户界面的临床决策支持工具,其中包含
通过以用户为中心的设计原则建立目标 1 和 2 的模型,然后测试其有效性、效率和
基于案例的模拟研究中的用户满意度这项研究是创新的,因为它将利用 NLP,
强化学习、可解释机器学习和多任务迁移学习方法。
拟议的研究意义重大,因为它将为上级提供强大的新工具,这些工具可以
在 EHR 中实施,以识别、诊断高危患者并提出治疗建议。
将导致提供早期、个性化的护理,以减少因病情恶化而导致的可预防的死亡。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development and external validation of deep learning clinical prediction models using variable-length time series data.
使用可变长度时间序列数据开发深度学习临床预测模型并进行外部验证。
- DOI:
- 发表时间:2024-04-29
- 期刊:
- 影响因子:0
- 作者:Bashiri, Fereshteh S;Carey, Kyle A;Martin, Jennie;Koyner, Jay L;Edelson, Dana P;Gilbert, Emily R;Mayampurath, Anoop;Afshar, Majid;Churpek, Matthew M
- 通讯作者:Churpek, Matthew M
Hierarchical Annotation for Building A Suite of Clinical Natural Language Processing Tasks: Progress Note Understanding.
用于构建一套临床自然语言处理任务的分层注释:进度注释理解。
- DOI:
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Gao, Yanjun;Dligach, Dmitriy;Miller, Timothy;Tesch, Samuel;Laffin, Ryan;Churpek, Matthew M;Afshar, Majid
- 通讯作者:Afshar, Majid
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Michael Churpek其他文献
Matthew Michael Churpek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Michael Churpek', 18)}}的其他基金
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
10615855 - 财政年份:2022
- 资助金额:
$ 56.72万 - 项目类别:
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
10405298 - 财政年份:2022
- 资助金额:
$ 56.72万 - 项目类别:
Using Machine Learning for Early Recognition and Personalized Treatment of Acute Kidney Injury
使用机器学习对急性肾损伤进行早期识别和个性化治疗
- 批准号:
10294824 - 财政年份:2021
- 资助金额:
$ 56.72万 - 项目类别:
Using Machine Learning for Early Recognition and Personalized Treatment of Acute Kidney Injury
使用机器学习对急性肾损伤进行早期识别和个性化治疗
- 批准号:
10683199 - 财政年份:2021
- 资助金额:
$ 56.72万 - 项目类别:
Developing a clinical decision support tool for the identification, diagnosis, and treatment of critical illness in hospitalized patients
开发用于住院患者危重疾病识别、诊断和治疗的临床决策支持工具
- 批准号:
10182492 - 财政年份:2021
- 资助金额:
$ 56.72万 - 项目类别:
Developing a clinical decision support tool for the identification, diagnosis, and treatment of critical illness in hospitalized patients
开发用于住院患者危重疾病识别、诊断和治疗的临床决策支持工具
- 批准号:
10454182 - 财政年份:2021
- 资助金额:
$ 56.72万 - 项目类别:
Using Machine Learning for Early Recognition and Personalized Treatment of Acute Kidney Injury
使用机器学习对急性肾损伤进行早期识别和个性化治疗
- 批准号:
10461848 - 财政年份:2021
- 资助金额:
$ 56.72万 - 项目类别:
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
9904745 - 财政年份:2017
- 资助金额:
$ 56.72万 - 项目类别:
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
9472356 - 财政年份:2017
- 资助金额:
$ 56.72万 - 项目类别:
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
10056599 - 财政年份:2017
- 资助金额:
$ 56.72万 - 项目类别:
相似海外基金
1/2: PREcision VENTilation to attenuate Ventilation-Induced Lung Injury (PREVENT VILI)
1/2:精确通气以减轻通气引起的肺损伤(预防 VILI)
- 批准号:
10738958 - 财政年份:2023
- 资助金额:
$ 56.72万 - 项目类别:
2/2: PREcision VENTilation to attenuate Ventilation-Induced Lung Injury (PREVENT VILI)
2/2:精确通气以减轻通气引起的肺损伤(预防 VILI)
- 批准号:
10738959 - 财政年份:2023
- 资助金额:
$ 56.72万 - 项目类别:
Supplemental Citicoline Administration for Reduction of Lung Injury Efficacy Trial (SCARLET)
补充胞二磷胆碱减少肺损伤疗效试验(SCARLET)
- 批准号:
10657726 - 财政年份:2022
- 资助金额:
$ 56.72万 - 项目类别:
Impact of Alcohol Misuse on Cognitive and Respiratory Outcomes in COVID-19-associated Acute Respiratory Failure
滥用酒精对 COVID-19 相关急性呼吸衰竭患者认知和呼吸结果的影响
- 批准号:
10491334 - 财政年份:2021
- 资助金额:
$ 56.72万 - 项目类别:
Optimizing Intensive Care Unit Staffing in the United States
优化美国重症监护病房的人员配置
- 批准号:
10390335 - 财政年份:2021
- 资助金额:
$ 56.72万 - 项目类别: