Biological Analysis Core
生物分析核心
基本信息
- 批准号:10683324
- 负责人:
- 金额:$ 102.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:21 year old3-DimensionalAddressAdultAgeAtlasesBiologicalBiological MarkersBiological ModelsBiologyBloodBrainCellsClinical assessmentsComputing MethodologiesDataData AnalysesElderlyExhibitsExperimental ModelsFreezingGene ExpressionGenetic ModelsGoalsImageIn SituIndirect ImmunofluorescenceIndividualLongevityMapsModalityModelingMolecularMolecular ProfilingMusOrganOrganoidsPhenotypePhysiologicalPopulationPrefrontal CortexProteomeProteomicsResearchResolutionSkinSpinal CordTechnologyTestingTissuesUniversitiesbrain tissuecell typecohortcomputerized toolsdata integrationdesignexperiencegenome-widehuman tissuein vitro Modelin vivoinduced pluripotent stem cellmiddle agemouse modelmulti-scale atlasmultimodalitynovelpharmacologicsenescencesingle nucleus RNA-sequencingspatial integrationtissue mappingtissue preparationtranscriptometranscriptomicsvalidation studiesyoung adult
项目摘要
BIOLOGICAL ANALYSIS CORE (BAC): PROJECT SUMMARY
Thus far, our understanding of the cellular and molecular mechanisms underlying the heterogenous, cell type-
specific phenotypes of senescence, including potentially convergent mechanisms, has been hindered by the
inability to collect in situ ‘omics’ data across the range of scales required, from subcellular to whole organ, in
multiple modalities, and with sufficient depth and throughput to locate the small percentage of cells that would
exhibit a senescence phenotype. To address this unmet need, the Biological Analysis Core (BAC) will generate
and analyze a single-cell level spatial atlas of cell type-specific transcriptome and proteome signatures at a depth
sufficient to permit identification of the rare and heterogeneous senescent cell population. This will be achieved
in intact tissues from healthy individuals ranging in age from 20 – 80 years, which represents a full spectrum of
the human adult lifespan. The ultimate goals of the BAC are to identify and validate a panel of robust senescence
biomarkers for each cell type in our target tissues, and their spatial context, at the single-cell level, and to assess
the cell autonomous and cell non-autonomous effects of senescent cells on the cellular composition and
molecular signatures of the tissue microenvironment. We will take advantage of the advanced technologies,
workflows, and novel computational tools developed and established in the Columbia University Senescence
Tissue Mapping (CUSTMAP) Center and our expertise/experience in generating multimodal omics data at the
single-cell level in three target tissues – brain, spinal cord, and skin. We will achieve our research goals by
employing: 1) the Spatial Transcriptomics (ST) approach pioneered by our team to generate an unbiased,
transcriptome-wide, and cell type-specific map of senescence in the context of intact human tissues, in
conjunction with single-nucleus RNA-seq (snRNA-seq) and novel computational methods developed by the Data
Analysis Core (DAC) to uncover the signatures of heterogeneous senescent cells; and 2) Iterative Indirect
Immunofluorescence Imaging (4i)-based proteomic profiling to enable the interpretation of spatially resolved
gene expression data in the context of cell type-specific senescence-associated changes at the single-cell level.
This combination, allowing for genome-wide molecular and cellular characterization of senescence at single-cell
resolution in space, has not been attempted at this scale and is one of the primary strengths of the CUSTMAP
Center approach. The BAC will achieve its goals in close coordination with the Biospecimen Core (BIO) and the
DAC, using optimized tissue preparation and ST/snRNA-seq/4i parameters. In conjunction with the DAC, the
BAC will integrate these data with analyses of CSF and blood (the biofluids associated with these tissues), to
relate SASP factors with tissue-level signatures. The BAC will also carry out critical validation studies of the
identified tissue- and cell type-specific senescence markers and senescence-associated molecular and cellular
features, using both cutting-edge iPSC-based in vitro models and tissues from mouse models of genetic and
pharmacological senolysis.
生物分析核心 (BAC):项目摘要
到目前为止,我们对异质细胞类型背后的细胞和分子机制的理解
衰老的特定表型,包括潜在的收敛机制,已受到阻碍
无法收集所需尺度范围(从亚细胞到整个器官)的原位“组学”数据
多种模式,并具有足够的深度和吞吐量来定位一小部分细胞,
为了解决这一未满足的需求,生物分析核心(BAC)将产生。
并深度分析细胞类型特异性转录组和蛋白质组特征的单细胞水平空间图谱
足以鉴定稀有且异质的衰老细胞群。这将得以实现。
在年龄从 20 岁到 80 岁之间的健康个体的完整组织中,这代表了全方位的
BAC 的最终目标是识别和验证一组稳健的衰老现象。
我们的目标组织中每种细胞类型的生物标志物及其空间背景,在单细胞水平上,并评估
衰老细胞对细胞组成的细胞自主和细胞非自主影响
我们将利用先进技术,
哥伦比亚大学衰老研究所开发和建立的工作流程和新颖的计算工具
组织图谱 (CUSTMAP) 中心以及我们在生成多模式组学数据方面的专业知识/经验
我们将通过在三个目标组织(大脑、脊髓和皮肤)的单细胞水平来实现我们的研究目标。
采用:1)我们团队首创的空间转录组学(ST)方法来生成公正的、
在完整的人体组织中,转录组范围和细胞类型特异性的衰老图谱
与单核 RNA-seq (snRNA-seq) 和 Data 开发的新颖计算方法相结合
分析核心(DAC)揭示异质衰老细胞的特征;2)迭代间接;
基于免疫荧光成像 (4i) 的蛋白质组分析能够解释空间分辨
单细胞水平上细胞类型特异性衰老相关变化背景下的基因表达数据。
这种组合允许对单细胞衰老进行全基因组分子和细胞表征
空间分辨率,尚未在这种规模上进行过尝试,这是 CUSTMAP 的主要优势之一
BAC 将与生物样本核心 (BIO) 和生物样本中心密切协调来实现其目标。
DAC,使用优化的组织制备和 ST/snRNA-seq/4i 参数与 DAC 结合使用。
BAC 将把这些数据与脑脊液和血液(与这些组织相关的生物体液)的分析相结合,以
BAC 还将对具有组织水平相关特征的 SASP 因子进行关键验证研究。
确定了组织和细胞类型特异性衰老标记以及衰老相关分子和细胞
特征,使用基于 iPSC 的尖端体外模型和来自遗传和遗传的小鼠模型的组织
药理衰老作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hemali Phatnani其他文献
Hemali Phatnani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hemali Phatnani', 18)}}的其他基金
Project 1: 3-D Molecular atlas of the aging brain
项目 1:衰老大脑的 3D 分子图谱
- 批准号:
10555897 - 财政年份:2023
- 资助金额:
$ 102.17万 - 项目类别:
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
Ti3C2Tx诱导锌金属负极表面三维重构及锌沉积调控新机制研究
- 批准号:52372236
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
本征二维磁性材料CrI3的缺陷原子结构与磁性关联研究
- 批准号:12304019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
- 批准号:52361040
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 102.17万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 102.17万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 102.17万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 102.17万 - 项目类别: