Biosensing in electrochemically controlled nano-junctions
电化学控制纳米结中的生物传感
基本信息
- 批准号:8257908
- 负责人:
- 金额:$ 10.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:BindingBiosensing TechniquesBuffersComplexDNADNA-Binding ProteinsDataDetectionDevelopmentDiagnosisElectric ConductivityElectrochemistryElectrodesElectron TransportFluorescenceFundingFutureGoalsGoldGrantImageIndividualIntercalating AgentsLaboratoriesLengthLightLinkLiteratureMeasuresMedicineMethodsMicroscopyMiniaturizationMolecularMonitorOpticsPoint MutationPoint-of-Care SystemsPositioning AttributeProcessProductivityProtein BindingProtocols documentationReadingResearchResearch InfrastructureResearch Project GrantsResolutionScanningScanning Tunneling MicroscopySchemeScienceScientistSequence-Specific DNA Binding ProteinSingle Nucleotide PolymorphismSolutionsSpottingsStudentsTATA-Box Binding ProteinTechnologyTrainingUnited States National Institutes of Healthaqueousbasebiochipcost effectiveelectrical propertygraduate studentlight intensitynanonanodevicenanometernanosensorsprogramspublic health relevancesingle moleculeundergraduate student
项目摘要
DESCRIPTION (provided by applicant): The progress in medicine is inherently linked to the development of robust technologies for the detection of biomolecules. The biochip technology provides accurate, practical, and cost-effective systems for point of care diagnosis via quantification of the molecular complexes using colorimetric, fluorescence, or electrochemical methods. The future development of the biochip methods depends on further miniaturization. It is clear, furthermore, that the processing of readout from biochips based on light intensity is fundamentally limited by the relationship between the size of the individual spot and the wave-length of light. This places a limitation on the accuracy of optical readout from the nanochips and thus provides an argument for further development of electrical detection schemes. Such electrical detection should enable the biochip technology to break through into the nanometer region since the resolution of the readings would be determined, in principle, by the size of a single DNA molecule. The goal of this proposal is to develop experimental strategies for the electrical detection of single-nucleotide polymorphisms (SNPs) and sequence- specific DNA-binding proteins (e.g. TATA binding protein) at the single molecule level via monitoring of the electrical properties of DNA molecules modified with covalently attached Nile Blue (NB) in electrochemically controlled nanoscopic tunnel junctions. The key objective of the proposed studies is to determine whether disruption of the DNA -stack via a single-point mutation or a protein binding results in an analytically effectual decrease in electrical conductivity of the helix. Specifically, we plan to develop protocols for the imaging of NB modified DNA arrays with single-molecule resolution via electrochemically controlled scanning tunneling microscopy, EC-STM. We will also use EC-STM approach to detect single nucleotide polymorphisms and to detect TATA binding protein (TBP) at the single molecule level. Finally, we will use the electrical conductivity of the NB modified DNA helix interposed between two closely spaced gold electrodes as an analytical nano-device for the detection of TBP based on sequence-specific binding to DNA. The PI's developmental objective is to continue engagement in bio-medically related research projects. It is expect that the requested SC-3 support would increase PI's productivity and would allow PI to continue research program with graduate and undergraduate students at CSULB. The completion of a four year funding requested in this application should allow PI to become more competitive for major NIH/NSF grant support. This funding will ultimately support the research infrastructure sustaining PI's efforts to entice students with the excitement of science and to train them to become our future scientists and professionals.
PUBLIC HEALTH RELEVANCE: The biochip technology provides accurate, practical, and cost-effective systems for point of care diagnosis. The future development of the biochip methods depends on further miniaturization. The goal of this proposal is to develop experimental strategies for the electrical detection of single-nucleotide polymorphisms (SNPs) and sequence-specific DNA-binding proteins (e.g. TATA binding protein) at the single molecule level. Demonstrating the feasibility of such detection is critically important in the development of DNA based nano-sensors.
描述(由申请人提供):医学的进度与生物分子检测的强大技术的开发固有地联系在一起。生物芯片技术通过使用比色法,荧光或电化学方法定量分子复合物,提供了准确,实用和成本效益的系统,用于诊断。生物芯片方法的未来发展取决于进一步的微型化。此外,很明显,基于光强度的生物芯片的读数从根本上受到了从单个点的大小与光长度之间的关系的限制。这限制了纳米芯片光学读数的准确性,因此为进一步开发电检测方案提供了一个论点。这种电气检测应使生物芯片技术能够通过单个DNA分子的大小确定读数的分辨率,从而使生物芯片技术突破到纳米区域。 该提案的目的是开发实验策略,以通过在单分子水平上监测DNA分子的DNA分子的电型nile蓝色(NBLECH)nile蓝色(NB)中的电型蓝色(NB)中的电气级别的电位,以在单分子水平上监测单分子水平的单分子水平上的单分子级别电位(例如TATA结合蛋白)的单个核苷酸多态性(SNP)和序列 - 特异性DNA结合蛋白(例如TATA结合蛋白)。连接。拟议研究的主要目的是确定通过单点突变或蛋白质结合对DNA堆的破坏是否会导致螺旋电导率的分析有效降低。具体而言,我们计划通过电化学控制的扫描隧道显微镜EC-STM来开发具有单分子分辨率的NB修饰DNA阵列成像的协议。我们还将使用EC-STM方法检测单个核苷酸多态性并在单分子水平上检测TATA结合蛋白(TBP)。最后,我们将使用插入两个紧密间隔的金电极之间的NB修饰的DNA螺旋的电导率作为分析纳米装置,以基于序列特异性结合与DNA的结合来检测TBP。 PI的发展目标是继续参与生物医学相关的研究项目。预计要求的SC-3支持将提高PI的生产率,并允许PI继续与CSULB的研究生和本科生一起研究计划。在本申请中要求的四年资金的完成应使PI在NIH/NSF主要赠款支持方面变得更有竞争力。这笔资金最终将支持维持PI努力的研究基础设施,以吸引学生兴奋,并训练他们成为我们未来的科学家和专业人士。
公共卫生相关性:生物芯片技术为护理点诊断提供了准确,实用且具有成本效益的系统。生物芯片方法的未来发展取决于进一步的微型化。该提案的目的是开发实验策略,以在单分子水平上进行单核苷酸多态性(SNP)和序列特异性DNA结合蛋白(例如TATA结合蛋白)的电气检测。证明这种检测的可行性对于基于DNA的纳米传感器的发展至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krzysztof Slowinski其他文献
Krzysztof Slowinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krzysztof Slowinski', 18)}}的其他基金
Biosensing in electrochemically controlled nano-junctions
电化学控制纳米结中的生物传感
- 批准号:
8051657 - 财政年份:2010
- 资助金额:
$ 10.73万 - 项目类别:
Biosensing in electrochemically controlled nano-junctions
电化学控制纳米结中的生物传感
- 批准号:
8461522 - 财政年份:2010
- 资助金额:
$ 10.73万 - 项目类别:
Biosensing in electrochemically controlled nano-junctions
电化学控制纳米结中的生物传感
- 批准号:
7846915 - 财政年份:2010
- 资助金额:
$ 10.73万 - 项目类别:
相似国自然基金
超灵敏场效应生物传感技术用于RNA载体与胞内互作生物分子的检测研究
- 批准号:52311530079
- 批准年份:2023
- 资助金额:10.00 万元
- 项目类别:国际(地区)合作研究与交流项目
太赫兹超表面光调控BICs模式生物传感技术研究
- 批准号:12304354
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于CRISPR生物技术与双传感效应的光纤传感器及其超灵敏猴痘病毒基因检测研究
- 批准号:62305224
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多通道半导体光电化学生物传感器的多重界面调和机制研究及其在抑郁症检测中的应用
- 批准号:62301446
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多重急性心肌梗死生物标志物现场快速检测的干式免疫闭合式双极电化学发光传感技术的研究
- 批准号:32371554
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of Optofluidic Resonators for Filoviral Detection
用于丝状病毒检测的光流控谐振器的开发
- 批准号:
10506889 - 财政年份:2022
- 资助金额:
$ 10.73万 - 项目类别:
Development of Optofluidic Resonators for Filoviral Detection
用于丝状病毒检测的光流控谐振器的开发
- 批准号:
10668494 - 财政年份:2022
- 资助金额:
$ 10.73万 - 项目类别:
Development of a charge-sensitive optical detection system for high-throughput study of small molecules
开发用于小分子高通量研究的电荷敏感光学检测系统
- 批准号:
10255419 - 财政年份:2021
- 资助金额:
$ 10.73万 - 项目类别:
Development of a charge-sensitive optical detection system for high-throughput study of small molecules
开发用于小分子高通量研究的电荷敏感光学检测系统
- 批准号:
10407060 - 财政年份:2021
- 资助金额:
$ 10.73万 - 项目类别:
Minimal False-alarm Touch-based Detection of SARS-Cov-2 Virus Particles using Poly-aptamers
使用多适体对 SARS-Cov-2 病毒颗粒进行最小误报触摸检测
- 批准号:
10320981 - 财政年份:2020
- 资助金额:
$ 10.73万 - 项目类别: