Operationalizing wastewater-based surveillance of multidrug-resistant bacteria
实施基于废水的多重耐药细菌监测
基本信息
- 批准号:10679007
- 负责人:
- 金额:$ 13.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-08 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAntibiotic ResistanceAntibiotic-resistant organismAntibioticsAntimicrobial ResistanceBiological ModelsBiomedical EngineeringBioreactorsCarbapenemsCephalosporin ResistanceCephalosporinsChromatinCirculationClinicalClinical DataCollectionCommunitiesDataDecision MakingDetectionDevelopmentDisease OutbreaksEarly DiagnosisFutureGene ExchangesGeneticGenotypeGrowthGuidelinesHealth Care CostsHorizontal Gene TransferHospitalizationHospitalsIndividualInfectionLinkLiteratureLung infectionsMedical centerMetagenomicsMethodsModelingMulti-Drug ResistanceMultiple Bacterial Drug ResistanceNeighborhoodsNon-linear ModelsNosocomial pneumoniaOutcomePatient IsolationPatientsPatternPhylogenetic AnalysisPlantsPopulationPopulation HeterogeneityPopulation SurveillancePredispositionPrevalencePublic HealthReportingResearchResistanceRiskRisk AssessmentSamplingSeriesStreamSurveillance ModelingTechniquesTemperatureTestingTimebacterial resistancecarbapenem resistanceclinically relevantcohortcostcost effectivedata acquisitiondesignepidemiological modelexperimental studygene interactiongut colonizationhigh riskimprovedmathematical modelmolecular markermortalitymulti-drug resistant pathogennovelpathogenpathogenic bacteriapathogenic viruspatient populationpressurepreventprimary outcomeresearch clinical testingresidenceresistance alleleresistance generesistance mechanismsociodemographicstooltransmission processtrendviral outbreakwastewater epidemiologywastewater sampleswastewater samplingwastewater surveillancewastewater testing
项目摘要
Multidrug-resistant organisms (MDRO) pose a significant risk to public health. Infections with MDRO are
associated with high mortality rates and healthcare costs, particularly related to hospital-acquired pneumonia.
Current approaches to control and prevent transmission of these pathogens focus primarily on clinical testing
of infectious patient isolates. This is costly, labor-intensive, and fails to account for asymptomatic carriage.
Wastewater testing can overcome many of the limitations posed by patient-based surveillance by enabling
cost-effective population-level data acquisition, which can subsequently be used to model and forecast
infectious outbreaks. To date, wastewater-based testing has been successfully used for surveillance of
pathogenic viruses, but barriers remain in applying this approach to MDRO. While pathogenic bacteria and
antibiotic resistance genes (ARGs) have been detected in wastewater treatment plants, several factors
currently limit the utility and accuracy of wastewater as a marker for overall burden and diversity of antibiotic
resistance. Here, we aim to better operationalize metagenomic wastewater-based epidemiology by
understanding the dynamics of multidrug-resistant bacteria during wastewater flow, as well as the relationship
between wastewater and clinical detection of MDRO. First, we will design wastewater MDRO model systems
by constructing plug-flow reactors and testing the effects of flow parameters such as hydraulic retention time,
pH, and temperature, as well as antibiotic pressure, on the prevalence and diversity of MDRO and ARG
genotypes. This will account for dynamics in growth rates and potential ARG exchange across species along
the wastewater flow, which could significantly affect the accuracy of wastewater-based surveillance models.
These bioreactor model systems will enable future experiments testing conditions relevant to specific MDRO
species or wastewater streams. In Aim 2, we will take advantage of our ongoing longitudinal wastewater
sampling at a major hospital center and the surrounding community to correlate MDRO in wastewater with
clinical MDRO and existing patient surveillance cohorts. Through chromatin-linked metagenomics and long-
read sequencing we will elucidate phylogenetic links between MDRO in hospital and community wastewater
with infectious patient isolates, and potential differences in evolutionary patterns of MDRO in patient versus
wastewater collections. Lastly, in Aim 3 we will interrogate different approaches to wastewater-based
epidemiological modeling to estimate MDRO burden in a given community. We will contrast linear and
nonlinear additive regression models with dynamic mathematical modeling approaches. We will incorporate
wastewater flow parameters and community sociodemographics as well as molecular biomarker data, as
normalization factors to improve model accuracy. Risk assessment techniques will be applied to these
wastewater models to inform development of future public health decision making tools. If successful, the
results of this study would enable wastewater surveillance as a tool to inform targeted mitigation strategies to
prevent the spread of antibiotic multidrug-resistance.
多重耐药微生物(MDRO)对公众健康构成重大风险。 MDRO 感染是
与高死亡率和医疗费用有关,特别是与医院获得性肺炎有关。
目前控制和预防这些病原体传播的方法主要集中在临床测试上
传染性患者分离株。这是成本高昂、劳动密集型的,而且无法考虑到无症状携带者。
废水检测可以克服基于患者的监测带来的许多限制,方法是:
具有成本效益的人口水平数据采集,随后可用于建模和预测
传染病爆发。迄今为止,基于废水的测试已成功用于监测
病原病毒,但将这种方法应用于 MDRO 仍然存在障碍。虽然致病菌和
在废水处理厂中检测到抗生素抗性基因(ARG),有几个因素
目前限制了废水作为抗生素总体负荷和多样性标记的效用和准确性
反抗。在这里,我们的目标是通过以下方式更好地实施基于宏基因组废水的流行病学
了解废水流动过程中多重耐药细菌的动态以及相互关系
废水与 MDRO 临床检测之间的关系。首先,我们将设计废水MDRO模型系统
通过构建推流反应器并测试水力停留时间等流动参数的影响,
pH、温度以及抗生素压力对 MDRO 和 ARG 的流行率和多样性的影响
基因型。这将解释生长速率的动态以及物种间潜在的 ARG 交换
废水流量,这可能会显着影响基于废水的监测模型的准确性。
这些生物反应器模型系统将使未来的实验能够测试与特定 MDRO 相关的条件
物种或废水流。在目标 2 中,我们将利用我们正在进行的纵向废水处理
在主要医院中心和周边社区进行采样,将废水中的 MDRO 与
临床 MDRO 和现有患者监测队列。通过染色质相关的宏基因组学和长
读测序我们将阐明医院和社区废水中 MDRO 之间的系统发育联系
与传染性患者分离株的关系,以及患者与患者之间 MDRO 进化模式的潜在差异
废水收集。最后,在目标 3 中,我们将探讨基于废水的不同方法
流行病学模型可估计特定社区的 MDRO 负担。我们将对比线性和
采用动态数学建模方法的非线性加性回归模型。我们将合并
废水流参数和社区社会人口统计数据以及分子生物标志物数据,
标准化因子以提高模型精度。风险评估技术将应用于这些
废水模型为未来公共卫生决策工具的开发提供信息。如果成功的话,
这项研究的结果将使废水监测成为一种工具,为有针对性的缓解战略提供信息
防止抗生素多重耐药性的传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Medini Annavajhala其他文献
Medini Annavajhala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Medini Annavajhala', 18)}}的其他基金
Operationalizing wastewater-based surveillance of multidrug-resistant bacteria
实施基于废水的多重耐药细菌监测
- 批准号:
10449747 - 财政年份:2022
- 资助金额:
$ 13.08万 - 项目类别:
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于GWAS和TWAS的食源性沙门氏菌氟喹诺酮类抗生素耐药性产生新机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于藻-菌互作的抗生素耐药性在水生态系统传播的化学生态学研究
- 批准号:32171626
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于单细胞拉曼研究抗生素耐药性从环境菌向人类病原菌的传播机制和风险
- 批准号:22176186
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 13.08万 - 项目类别:
Immune recognition of Klebsiella pneumoniae O2v1 and O2v2 O-antigen subtypes
肺炎克雷伯菌 O2v1 和 O2v2 O 抗原亚型的免疫识别
- 批准号:
10739041 - 财政年份:2023
- 资助金额:
$ 13.08万 - 项目类别:
The roles of fosfomycin resistant subpopulations of Escherichia coli in urinary tract infection.
大肠杆菌磷霉素耐药亚群在尿路感染中的作用。
- 批准号:
10603417 - 财政年份:2023
- 资助金额:
$ 13.08万 - 项目类别:
Photodynamic therapy for perforated appendicitis
光动力疗法治疗穿孔性阑尾炎
- 批准号:
10722767 - 财政年份:2023
- 资助金额:
$ 13.08万 - 项目类别:
O-polysaccharide (OPS)-IpaB Conjugate Vaccine to Prevent Shigellosis
O-多糖 (OPS)-IpaB 结合疫苗预防志贺氏菌病
- 批准号:
10704815 - 财政年份:2023
- 资助金额:
$ 13.08万 - 项目类别: