Optogenetic dissection of Erk signal interpretation in early embryogenesis

早期胚胎发生中 Erk 信号解释的光遗传学解析

基本信息

  • 批准号:
    10679294
  • 负责人:
  • 金额:
    $ 6.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Signaling pathways pattern cell fate choices in the developing embryo, but how do only a limited number of pathways control the complex events of development? Spatial signaling gradients as well as temporal signaling dynamics are known to be important for directing multiple fates with the same pathway, yet the mechanisms cells use to interpret these signaling events remains largely uncharacterized. One pathway which plays diverse roles throughout embryogenesis, wound healing, and cancer progression is the highly conserved extracellular signal-regulated kinase (Erk) signaling network. The early Drosophila embryo is a classic in vivo model of tissue patterning by Erk signaling: a spatial gradient of Erk signal at the poles specifies anterior and posterior structure and dictates endoderm versus ectoderm fate decisions. Although these patterns are well-defined, recent work in the Toettcher laboratory using an optogenetic tool to manipulate the Erk signal in vivo with exquisite spatial and temporal precision has revealed major open questions about the mechanisms by which Erk signals are interpreted. Here, I propose to define the mechanisms by which the Drosophila embryo interprets differences in Erk dose to create spatial patterns of gene expression and make decisions about cell fate. To address this question, I will use a combination of cutting-edge optogenetic tools, live-cell biosensors, genomic analysis, and classical genetic perturbations. In Aim 1, I will examine how spatial patterns of gene expression are robust to major corruption of the Erk gradient. In Aim 2, I will explore how only two transcription factors can control multiple distinct fates over a wide range of Erk signal strength. Altogether, using precision tools for manipulating signaling inputs and quantifying expression outputs, this proposal will reveal how Erk signals are measured and interpreted by downstream genes, addressing a fundamental question in developmental biology which will surely have relevance for other signaling pathways and cellular contexts for Erk signaling. Through this research and the accompanying training plan I will obtain exceptional training in optogenetics, advanced microscopy, and genomics, positioning me for an impactful career at the interface of cell and developmental biology.
项目概要/摘要 信号通路决定了发育中胚胎的细胞命运选择,但只有有限数量的细胞如何做出选择? 途径控制发育的复杂事件?空间信号梯度以及时间信号 众所周知,动力学对于通过同一途径引导多种命运非常重要,但其机制 用于解释这些信号事件的细胞在很大程度上仍然未知。一条道路发挥多种作用 高度保守的细胞外蛋白在整个胚胎发生、伤口愈合和癌症进展中发挥着重要作用 信号调节激酶(Erk)信号网络。早期果蝇胚胎是经典的体内模型 通过 Erk 信号形成组织图案:两极 Erk 信号的空间梯度指定前部和后部 结构并决定内胚层与外胚层的命运决定。尽管这些模式定义明确, Toettcher 实验室最近的工作使用光遗传学工具来操纵体内的 Erk 信号 精确的空间和时间精度揭示了有关机制的重大悬而未决的问题 Erk 信号被解释。在这里,我建议定义果蝇胚胎的机制 解释 Erk 剂量的差异以创建基因表达的空间模式并做出有关细胞的决策 命运。为了解决这个问题,我将结合使用尖端光遗传学工具、活细胞生物传感器、 基因组分析和经典的遗传扰动。在目标 1 中,我将研究基因的空间模式如何 表达式对 Erk 梯度的严重损坏具有鲁棒性。在目标 2 中,我将探讨如何仅使用两个转录 因素可以在广泛的 Erk 信号强度范围内控制多种不同的命运。总而言之,使用精度 操纵信号输入和量化表达输出的工具,该提案将揭示 Erk 如何 信号由下游基因测量和解释,解决了一个基本问题 发育生物学肯定与其他信号通路和细胞环境相关 埃尔克发出信号。通过这项研究和随附的培训计划,我将获得以下方面的特殊培训: 光遗传学、先进显微镜学和基因组学,使我能够在以下领域从事有影响力的职业生涯 细胞和发育生物学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Kolenbrander Ho其他文献

Emily Kolenbrander Ho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Kolenbrander Ho', 18)}}的其他基金

Regulation of Hedgehog-dependent proliferation by dynamic primary cilia
动态初级纤毛对刺猬依赖性增殖的调节
  • 批准号:
    9754582
  • 财政年份:
    2018
  • 资助金额:
    $ 6.95万
  • 项目类别:

相似国自然基金

社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
  • 批准号:
    82370895
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
  • 批准号:
    52305599
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
  • 批准号:
    52378051
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
  • 批准号:
    12305308
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Age-Dependent N-Glycosylation of Follicle-Stimulation Hormone in Gonadotropes
促性腺激素中卵泡刺激激素的年龄依赖性 N-糖基化
  • 批准号:
    10679254
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
  • 批准号:
    10734863
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Exploring novel modulators for rescuing cigarette smoke-induced corneal edema and examining iPSC-derived corneal endothelial cells as a treatment modality
探索新型调节剂来挽救香烟烟雾引起的角膜水肿并检查 iPSC 衍生的角膜内皮细胞作为治疗方式
  • 批准号:
    10723408
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Elucidating signaling networks in Anterior Segment development, repair and diseases
阐明眼前节发育、修复和疾病中的信号网络
  • 批准号:
    10718122
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
  • 批准号:
    10587615
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了