The Effect of Blood Flow Changes in Brain Microvasculature on Pericyte-Endothelial Cell Interaction
脑微血管血流变化对周细胞-内皮细胞相互作用的影响
基本信息
- 批准号:10680128
- 负责人:
- 金额:$ 4.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-10 至 2025-06-09
- 项目状态:未结题
- 来源:
- 关键词:AblationAcuteAddressAdjuvantAdultAffectAgeAntibodiesAutomobile DrivingBindingBiological AssayBiomechanicsBiophysicsBloodBlood - brain barrier anatomyBlood VesselsBlood capillariesBlood flowBrainCD31 AntigensCapillary PermeabilityCause of DeathCell CommunicationCell physiologyCellsCerebrospinal FluidCerebrovascular CirculationCerebrovascular systemCoagulation ProcessCuesDataDevelopmentDiseaseEconomic BurdenEffectivenessEmbryonic DevelopmentEndothelial CellsExtracellular MatrixFaceGene ExpressionGlucoseGoalsHealthHemorrhageHomeostasisHumanHypoxiaITGA5 geneImageImpairmentIncubatedIndividualInflammationInflammatoryInflammatory ResponseInjectionsIntegrin InhibitionIntercellular JunctionsInterleukin-1 betaIschemic StrokeKnowledgeLasersLegal patentLentivirusLifeLinkMeasuresMechanicsMediatingMetabolicMicrocirculationModelingMolecularMolecular AnalysisMorphologyMusOrganPatient-Focused OutcomesPatientsPerfusionPericytesPhasePhysiologyPopulationPreparationProcessProtein BiosynthesisProteinsRecoveryReperfusion TherapyReporterRiskScanning Electron MicroscopySignal TransductionSignaling ProteinSliceSmall Interfering RNASocietiesStrokeTechnologyTestingThrombectomyThrombusTimeTissuesTranslatingUnited StatesUp-RegulationVascular SystemVitronectinacute strokeblood-brain barrier functionbrain endothelial cellcadherin 5cerebral microvasculaturecerebrovascularclinically significantconfocal imagingdesigndisabilityhemodynamicsimprovedimproved outcomein vivoin vivo Modelinhibitorlaboratory experiencelong term recoverymechanical signalnext generationnovelnovel therapeuticsoverexpressionparticlepharmacologicpostnatalpreventpublic health relevancereceptorresponsestroke patientstroke therapythrombolysistoolvector
项目摘要
PROJECT SUMMARY
Stroke is one of the most common causes of death and disability in the United States and worldwide. The
vascular system is meticulously regulated throughout life to adapt to changes in metabolic demand and blood
flow under widely variable conditions. Many ischemic stroke patients however fail to fully recover following an
acute attack. This impaired recovery is related in part to the limited return of perfusion within the brain
microcirculation, even after restoring the patency of occluded vessels – a scenario referred to as the “no-reflow”
phenomenon. Blood circulating within the vascular system exerts different types of forces on the surrounding
vessels. These forces are sensed and interpreted by the vascular cells to guide their development during
embryogenesis and regulate remodeling during postnatal and adult life. It has been also suggested in recent
years that there are signals downstream of mechanical changes that are exchanged between vascular cells.
Specifically, pericytes and endothelial cells integrate these cues to dynamically regulate blood vessel physiology,
capillary permeability, and changes in microvascular tone in health and in disease. Despite recent advances in
our knowledge of flow-mediated biomechanical inputs, the underlying molecular processes and their link to
hemodynamic forces in vivo are still emerging, in part due to limitations in the tools and models to measure these
forces. To help fill this gap in knowledge, the proposed study aims to investigate the impact of abrupt changes
in blood flow on two components of the blood-brain barrier -- pericytes and endothelial cells -- and their interaction
in mature brain vessels under static conditions following the loss of flow. We will utilize both ex vivo and in vivo
models to establish the mechanistic interactions underlying how pericytes and endothelial cells process,
interpret, and organize various mechanical signals. Additionally, we will look at corresponding changes in the
surrounding extracellular matrix that might accompany this cellular interplay, specifically interactions between
endothelial cell integrin α5 and pericyte-derived vitronectin within the capillary wall. Our preliminary data suggests
a two-phase response over time following an acute shift towards static conditions. We propose that an early
stage marked by a rapid inflammatory response, involving elevated interleukin-1beta expression, is overlaid by
a hypoxia-driven response in a subsequent phase, both contributing to cerebrovascular instability and an
increased risk for hemorrhagic conversion of ischemic stroke patients after re-establishing cerebral blood flow.
Identifying the key mechanistic determinants responsible for blood vessel destabilization in the brain during the
hyper-acute phase of stroke will provide targetable signals that could be clinically significant in advancing stroke
therapies.
项目概要
中风是美国和全世界最常见的死亡和残疾原因之一。
血管系统在整个生命过程中都受到精心调节,以适应代谢需求和血液的变化
然而,许多缺血性中风患者在各种情况下都无法完全康复。
这种急性发作的恢复受损部分与脑内灌注恢复有限有关。
即使在闭塞血管恢复通畅后,微循环仍然存在——这种情况被称为“无复流”
血管系统内循环的血液对周围环境施加不同类型的力。
血管细胞感知并解释这些力,以指导其发育。
最近还提出了胚胎发生并调节出生后和成年期间的重塑。
多年来,血管细胞之间交换机械变化的下游信号。
具体来说,周细胞和内皮细胞整合这些线索来动态调节血管生理学,
尽管最近在健康和疾病中取得了进展,但毛细血管通透性以及微血管张力的变化。
我们对流介导的生物力学输入、潜在分子过程及其与
体内血流动力学仍在不断出现,部分原因是测量这些血流动力学的工具和模型的局限性
为了帮助填补这一知识空白,拟议的研究旨在调查突然变化的影响。
血脑屏障的两个组成部分(周细胞和内皮细胞)上的血流及其相互作用
在血流丧失后静态条件下的成熟脑血管中,我们将利用离体和体内两种方法。
建立周细胞和内皮细胞如何处理的机制相互作用的模型,
此外,我们还将研究各种机械信号的相应变化。
周围的细胞外基质可能伴随这种细胞相互作用,特别是之间的相互作用
我们的初步数据表明,毛细血管壁内存在内皮细胞整合素 α5 和周细胞衍生的玻连蛋白。
我们建议尽早向静态条件转变后随时间的两阶段响应。
以快速炎症反应为标志的阶段,涉及白细胞介素-1β表达升高,被
随后阶段的缺氧驱动反应,既导致脑血管不稳定,又导致
重新建立脑血流后缺血性中风患者发生出血性转化的风险增加。
确定导致大脑血管不稳定的关键机制决定因素
中风的超急性期将提供可针对中风进展具有临床意义的目标信号
疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanaa Abdelazim其他文献
Hanaa Abdelazim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
- 批准号:82374256
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
- 批准号:82300771
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
- 批准号:82374209
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Neural pathways for obesity development by AgRP neurons
AgRP 神经元导致肥胖发展的神经通路
- 批准号:
10681993 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别: