A method to improve capture of causal genetics and by extension, cross-population portability when constructing polygenic scores
一种在构建多基因评分时改善因果遗传学捕获以及扩展的跨群体可移植性的方法
基本信息
- 批准号:10679656
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至
- 项目状态:未结题
- 来源:
- 关键词:AdmixtureAfrican ancestryAgeAgonistAlzheimer&aposs DiseaseAsthmaAtlasesBiologicalBody mass indexCardiovascular DiseasesClinicalClinical TrialsColoradoComplexDataData AnalysesData SetDatabasesDiseaseDrug PrescriptionsEnvironmentEuropeanEuropean ancestryExhibitsFutureGenesGeneticGenetic MedicineGenetic RecombinationHistorical DemographyIndividualInequityInsulin-Dependent Diabetes MellitusLDL Cholesterol LipoproteinsMajor Depressive DisorderMalignant neoplasm of prostateMedicalMethodsModelingOutcomeParticipantPatient Self-ReportPatternPerformancePhenotypePopulationPreventive MedicinePreventive healthcareRecording of previous eventsRestRiskRisk EstimateRisk FactorsScanningScoring MethodSerumSignal TransductionSingle Nucleotide PolymorphismSmoking StatusSocioeconomic StatusStructureSystematic BiasTestosteroneWorkbiobankclinical applicationclinical caredisorder riskdiverse dataexperiencegene environment interactiongenetic architecturegenome wide association studyimprovedinterestmalignant breast neoplasmmemberneglectnovelpersonalized medicinephenomeportabilityprematuresexsexual dimorphismsimulationstudy populationtooltrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Polygenic scores (PGS) can predict disease risk in a population or an individual using genetic data and are
poised to improve clinical care by making personalized preventive medicine a reality. Unfortunately, current
methods of PGS are less accurate predictors across populations of non-European ancestry as a consequence
of Eurocentric biases in genome-wide association studies (GWAS). PGS prediction accuracy can also vary
within just a single population due to differences in the environment experienced by individuals. These biases
in prediction both within and between populations severely limit the applicability of PGS. Unlike other forms of
medical inequity which benefit one population while harming or neglecting another (e.g., prescription drugs
such as some long-acting β2-agonist asthma treatments which exacerbate illness in African-ancestry
populations), PGS perform ubiquitously better across European populations, leading clinical applications to
systematically benefit individuals of European descent and neglecting the rest of the world. Despite this
systematic bias, clinical trials of PGS are underway with applications in breast and prostate cancers, type I
diabetes, and cardiovascular disease. Interest in PGS is only growing despite its limitations, so I propose to
develop methods that can aid in mitigating some of the harm caused by premature applications of PGS. In Aim
1 I will build and apply PGS(C) a method of PGS which can account for the effects of a binarized context (e.g.,
sex) on a trait by incorporating gene by context interactions (GxC) into my PGS model. I will apply this model
to improving prediction of sexually dimorphic traits such as major depression and Alzheimer’s disease witin
multiple diverse datasets. This will yield a more portable PGS better able to predict disease risk in varied
populations, incorporating biological variability, and gene by environment (GxE) interactions into prediction. In
Aim 2 I will extend this method to incorporate continuous contexts (e.g., ancestry, environment, age, etc.) into
prediction. Additionally, I will compare my novel PGS(C) method to existing state-of-the-art PGS methods to
itdentify when each method mostly accurately predicts a trait while minimizing loss in portability. This work is a
concerted effort to improve PGS portability, a crucial step in constructing a score that can bridge existing gaps
in genetic medicine negatively impacting diverse and underrepresented study populations.
项目概要/摘要
多基因评分 (PGS) 可以使用遗传数据预测人群或个体的疾病风险,
不幸的是,目前正准备通过使个性化预防医学成为现实来改善临床护理。
因此,PGS 方法对于非欧洲血统人群的预测不太准确
全基因组关联研究 (GWAS) 中的欧洲中心偏差的影响也可能有所不同。
由于个体所经历的环境差异,这些偏见只存在于单一人群中。
与其他形式的 PGS 不同,群体内部和群体之间的预测严重限制了 PGS 的适用性。
医疗不平等使一个群体受益,同时伤害或忽视另一个群体(例如处方药
例如一些长效 β2 激动剂哮喘治疗药物会加重非洲血统的疾病
人群),PGS 在欧洲人群中普遍表现得更好,导致临床应用
尽管如此,个人还是系统地受益于欧洲血统而忽视了世界其他地区。
由于存在系统偏差,PGS 的临床试验正在进行中,用于乳腺癌和前列腺癌 I 型
尽管存在局限性,但对 PGS 的兴趣仍在不断增长,因此我建议
开发有助于减轻过早应用 PGS In Aim 造成的一些危害的方法。
1 我将构建并应用 PGS(C) 一种 PGS 方法,它可以解释二值化上下文的影响(例如,
通过将基因与背景相互作用 (GxC) 合并到我的 PGS 模型中,我将应用此模型。
改善对性别二态特征的预测,例如重度抑郁症和阿尔茨海默病
这将产生更便携的 PGS,能够更好地预测各种疾病风险。
群体,将生物变异性和基因与环境(GxE)相互作用纳入预测。
目标 2 我将扩展此方法,将连续的上下文(例如,祖先、环境、年龄等)纳入到
此外,我会将我的新颖 PGS(C) 方法与现有最先进的 PGS 方法进行比较。
它确定每种方法何时最准确地预测特征最小化,同时损失可移植性。
共同努力提高 PGS 可移植性,这是构建可以弥补现有差距的分数的关键一步
遗传医学对多样化和代表性不足的研究人群产生负面影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Renee Fonseca其他文献
Renee Fonseca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
The Impact of Social, Genetic and Neuroimaging Factors on Cognitive Functioning in the Black Community
社会、遗传和神经影像因素对黑人社区认知功能的影响
- 批准号:
10664484 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Recruitment and Retention for Alzheimer's Disease Diversity Genetic Cohorts in the ADSP (READD-ADSP)
ADSP 中阿尔茨海默病多样性遗传群体的招募和保留 (READD-ADSP)
- 批准号:
10333054 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
The Study of Muscle and Physical Performance in African Caribbeans.
非洲加勒比海地区肌肉和身体表现的研究。
- 批准号:
10337382 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Sex and racial/ethnic differences in B-ALL genomics
B-ALL 基因组学中的性别和种族/民族差异
- 批准号:
10555358 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
The Study of Muscle and Physical Performance in African Caribbeans.
非洲加勒比海地区肌肉和身体表现的研究。
- 批准号:
10598636 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别: