Genetic Regulation of Cardiac Patterning in Zebrafish
斑马鱼心脏模式的遗传调控
基本信息
- 批准号:8258456
- 负责人:
- 金额:$ 38.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAwarenessBiologicalBlood CirculationCardiacCardiac MyocytesCell CountCellsCharacteristicsComprehensionCongenital AbnormalityDataDevelopmentDimensionsDissectionEmbryoEvaluationExplosionFibroblast Growth FactorFirearmsGenesGeneticHeartHeart AtriumIndividualLaboratory ResearchLateral MesodermLightMaintenanceMapsMediatingModelingMyocardiumOrganPathway interactionsPatternPhysiciansPlasticsPlayPopulationProductionPsychological reinforcementRegenerative MedicineRegulationReporterResearchRoleSignal PathwaySignal TransductionStem cellsSurveysTestingTherapeuticTimeTissuesTransgenic OrganismsTubeVentricularWorkZebrafishheart functionimprovedinnovationmigrationnovelprogenitortraittranscription factor
项目摘要
DESCRIPTION (provided by applicant): Organ function relies upon the appropriate attributes of each of its individual operational components. For example, in the embryonic vertebrate heart, effective propulsion of circulation depends upon the distinct morphological, electrophysiological, and contractile traits of the atrial and ventricular chambers. Despite centuries of awareness of the key differences between atrial and ventricular cardiomyocytes, the fundamental mechanisms that allocate cells into chamber-specific lineages and direct chamber-specific differentiation remain largely mysterious. Our laboratory's research focuses on understanding the genetic pathways responsible for chamber fate assignment. By exploiting the utility of the zebrafish as a model organism, we have shown that the BMP and FGF signaling pathways differentially affect atrial and ventricular cell numbers, providing important clues to the mechanisms that initially establish the atrial and ventricular progenitor pools. Furthermore, our preliminary data indicate that initial chamber fate decisions can be plastic and that mechanisms exist to maintain chamber- specific characteristics in differentiated myocardium. Together, our studies suggest an intriguing model in which early patterning of the heart field, followed by later reinforcement of chamber identity, results in proper chamber fate assignment. Here, we propose to evaluate aspects of this model in detail. In Aim 1, we will delve deeper into the mechanisms responsible for the initial establishment of chamber progenitor pools. Specifically, we will use fate mapping, time-lapse tracking, mosaic analysis, and evaluation of candidate effector genes to determine how BMP signaling promotes the establishment of atrial progenitor cells. In Aim 2, we will investigate the mechanisms that maintain chamber identity. Employing transgenic reporters of chamber identity, time-lapse analysis, mosaic analysis, and dissection of chamber-specific regulatory sequences, we will test whether FGF signaling functions to insure maintenance of ventricular chamber identity by promoting expression of nkx genes. Finally, in Aim 3, we will pursue identification of new pathways that regulate chamber fate assignment, taking advantage of our discovery of 4 intriguing compounds that impact atrial or ventricular cardiomyocyte production. Together, our studies will illuminate new features of the network of pathways controlling chamber fate assignment. In the long term, this work has the potential to shed light on the causes of cardiac birth defects and to facilitate innovations in regenerative medicine.
PUBLIC HEALTH RELEVANCE: Effective heart function depends upon the specific dimensions and functional characteristics of the atrial and ventricular cardiac chambers. However, the genetic pathways responsible for creating distinct atrial and ventricular tissues are not well understood. In the long term, a better comprehension of this topic will improve our understanding of the causes of common cardiac birth defects and will suggest strategies for directing chamber-specific differentiation of pluripotent cells for therapeutic purposes.
描述(由申请人提供):器官功能依赖于其每个单个操作组件的适当属性。例如,在胚胎脊椎动物心脏中,有效的循环推进取决于心房和心室腔的独特的形态学,电生理和收缩性特征。尽管对心房和心室心肌细胞之间的关键差异的认识几个世纪,但将细胞分配到腔室特异性谱系和直接室特异性分化的基本机制仍然在很大程度上是神秘的。 我们的实验室研究重点是理解负责室内命运分配的遗传途径。通过利用斑马鱼作为模型生物的效用,我们表明,BMP和FGF信号通路会差异地影响房屋和心室细胞数,从而为最初建立心房和心室祖细胞池的机制提供了重要的线索。此外,我们的初步数据表明,初始室命运的决策可以是塑性的,并且存在维持分化心肌中腔室特异性的机制。我们的研究共同提出了一个有趣的模型,其中心脏场的早期模式,然后是后来加强腔室身份,从而导致适当的室命运分配。在这里,我们建议详细评估该模型的各个方面。在AIM 1中,我们将深入研究负责初始建立室祖细胞池的机制。具体而言,我们将使用命运映射,延时跟踪,镶嵌分析和评估候选效应子基因,以确定BMP信号如何促进心房祖细胞的建立。在AIM 2中,我们将研究维持房间身份的机制。采用腔室认同,延时分析,镶嵌分析和腔室特异性调节序列的解剖的转基因记者,我们将通过促进NKX基因的表达来测试FGF信号功能是否可以通过促进室内腔室身份维持。最后,在AIM 3中,我们将利用发现4种影响心房或心室心肌细胞产生的4种有趣化合物的新途径来识别调节室命运分配的新途径。 总之,我们的研究将阐明控制室命运分配的途径网络的新特征。从长远来看,这项工作有可能阐明心脏先天缺陷的原因并促进再生医学的创新。
公共卫生相关性:有效的心脏功能取决于心房和心室心房的特定维度和功能特征。然而,尚不清楚导致创建不同心房和心室组织的遗传途径。从长远来看,对该主题的更好理解将提高我们对常见心脏出生缺陷的原因的理解,并将提出指导多能细胞的特定于室特异性分化的策略,以进行治疗目的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEBORAH YELON其他文献
DEBORAH YELON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEBORAH YELON', 18)}}的其他基金
Weinstein Cardiovascular Development and Regeneration Conference
韦恩斯坦心血管发育与再生会议
- 批准号:
10683505 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Modulating Morphogenesis: Genetic Regulation of Cardiac Cell Movement in Zebrafish
调节形态发生:斑马鱼心肌细胞运动的遗传调控
- 批准号:
9513941 - 财政年份:2016
- 资助金额:
$ 38.68万 - 项目类别:
Modulating Morphogenesis: Genetic Regulation of Cardiac Cell Movement in Zebrafish
调节形态发生:斑马鱼心肌细胞运动的遗传调控
- 批准号:
9330923 - 财政年份:2016
- 资助金额:
$ 38.68万 - 项目类别:
Genetic Regulation of Outflow Tract Formation in Zebrafish
斑马鱼流出道形成的遗传调控
- 批准号:
8131347 - 财政年份:2011
- 资助金额:
$ 38.68万 - 项目类别:
Regulation of cardiac chamber morphogenesis in zebrafish
斑马鱼心室形态发生的调节
- 批准号:
7072323 - 财政年份:2005
- 资助金额:
$ 38.68万 - 项目类别:
Regulation of cardiac chamber morphogenesis in zebrafish
斑马鱼心室形态发生的调节
- 批准号:
7243460 - 财政年份:2005
- 资助金额:
$ 38.68万 - 项目类别:
Regulation of cardiac chamber morphogenesis in zebrafish
斑马鱼心室形态发生的调节
- 批准号:
7431653 - 财政年份:2005
- 资助金额:
$ 38.68万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Is gestational sleep apnea a previously unrecognized cause of maternal immune activation that predisposes male offspring to disease-relevant neural dysfunction?
妊娠期睡眠呼吸暂停是否是一种以前未被认识到的母体免疫激活的原因,导致男性后代容易出现与疾病相关的神经功能障碍?
- 批准号:
10680972 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Contribution of Vitamin D Deficiency to Pathological Progression in Models of Cerebral Hypoperfusion
维生素 D 缺乏对脑低灌注模型病理进展的影响
- 批准号:
10725358 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
A novel cell-based platform to study human circadian disorders
研究人类昼夜节律紊乱的新型细胞平台
- 批准号:
10736091 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Targeting the detoxification function of the enzyme KDSR for cancer therapy
针对癌症治疗中 KDSR 酶的解毒功能
- 批准号:
10595401 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别: