Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
基本信息
- 批准号:10680460
- 负责人:
- 金额:$ 37.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-09 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATP-G-actinAbdominal CavityActinsAdipocytesAffectAnimalsAscitesAutophagocytosisAutophagosomeBiological AssayBiosensorCell SurvivalCellsCellular Metabolic ProcessChemoresistanceCytosolDataDevelopmentDiagnosisDiseaseDisease ProgressionDrug resistanceEnergy MetabolismEnergy-Generating ResourcesEnsureEnvironmentEpithelial ovarian cancerFatty AcidsFatty acid glycerol estersFree EnergyGeneticGenus HippocampusGlycolysisGrowthHeterogeneityHumanHypoxiaIn VitroIndividualInflammatoryIntermediate FilamentsLipidsLipolysisLiquid substanceLysosomesMalignant Female Reproductive System NeoplasmMeasuresMediatingMetabolicMetabolic stressMetabolismMicrospheresMitochondriaModelingMolecularMusNatureNeoplasm MetastasisNonesterified Fatty AcidsNutrientOmentumOrganoidsOvaryOxidative PhosphorylationPathway interactionsPeritonealPeritoneumPhenotypePolymersPrimary NeoplasmProductionProteinsReactive Oxygen SpeciesResearchResistanceRoleSmall Interfering RNASourceStressStromal CellsStructureTestingTherapeuticTumor PromotionVimentinbiophysical analysiscancer cellcancer therapycell motilitycell typechemotherapyfatty acid oxidationhigh resolution imagingin vivo Modelinhibition of autophagyinhibitorlipid metabolismlipid transportmetabolomicsmigrationneoplastic cellnew therapeutic targetnovelnutrient deprivationparacrinepharmacologicpolarized cellpolymerizationprogramsrecruitscaffoldsingle-cell RNA sequencingthree dimensional cell culturetumortumor growthtumor heterogeneitytumor metabolismtumor microenvironmenttumor progression
项目摘要
PROJECT SUMMARY
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer; frequently diagnosed after it has spread
from the ovary to the omentum fat pad. A major challenge to understanding and targeting EOC is the
heterogeneous nature of the disease, which makes it difficult to develop treatments that effectively target and
destroy all cancer cells. This heterogeneity results in complicated molecular landscapes with subpopulations of
highly invasive and chemoresistant tumor cells. It is critical to understand how this heterogeneity in cancer cells
develops and contributes to EOC disease progression. Polyploidal giant cancer cells represent a small
subpopulation of drug-resistant and dormant cancer cells that survive treatment and later awaken to form new
tumor cells through amitotic budding. Single cell biophysical analysis of tumor organoid cultures will be used to
determine how polyploidal giant cancer cells and other invasive cells contribute to EOC disease progression.
In the EOC tumor microenvironment, cancer cells frequently encounter metabolic stress from nutrient
deprivation, hypoxia, and toxic therapeutics, which can trigger metabolic reprogramming to promote cell survival.
Cells can undergo a metabolic shift from glycolysis to oxidative phosphorylation to meet energy demands of
survival and invasiveness; this shift in metabolism has been correlated with highly energetic mitochondria, lipid
droplet disappearance (lipolysis), and autophagy. This is especially important in PGCCs, which have increased
nutrient demands in part to their larger size and more invasive phenotype. Additionally, EOC metastases form
from multicellular aggregates that are shed from the primary tumor into the adipocyte-rich abdominal cavity.
Previous studies have demonstrated that peritoneal adipocytes can transfer free fatty acids to EOC cells to
provide cellular energy for metastatic tumor growth. Fatty acids provide a rich energy source for ATP-dependent
actin polymerization and actin-based protrusions are critical for cell migration and during metastasis.
We hypothesize that invasive EOC cells store energy from exogenous lipid sources (including adipocytes and
lipid-rich ascites fluid) in cytosolic lipid droplets, and under metabolic stress use these lipid droplets to generate
mitochondrial ATP that is required for invasive cell migration through autophagy. To prove this hypothesis, we
will use a novel 3D culture model and animal studies to track metabolic changes in individual chemoresistant
EOC cells as well as study heterogeneity in lipid droplet metabolism. The proposed research will investigate the
role of metabolic and treatment stress in activating lipid metabolism (Aim 1) and autophagy (Aim 2), and
determine how metabolic alterations in subpopulations of highly invasive cells (including PGCCs) contribute to
the development of aggressive tumors (Aim 3). The proposed studies will reveal novel mechanisms contributing
to cellular heterogeneity and dysregulated metabolism, along with new therapeutic targets to investigate in EOC.
项目概要
上皮性卵巢癌(EOC)是最致命的妇科癌症;经常在传播后被诊断出来
从卵巢到大网膜脂肪垫。理解和瞄准 EOC 的一个主要挑战是
该疾病的异质性,这使得开发有效靶向和治疗的方法变得困难
消灭所有癌细胞。这种异质性导致复杂的分子景观与亚群
高度侵袭性和化学耐药性的肿瘤细胞。了解癌细胞中的这种异质性是如何产生的至关重要
发展并促进 EOC 疾病进展。多倍体巨型癌细胞代表了一个小的
耐药和休眠癌细胞亚群,它们在治疗中存活下来,随后苏醒形成新的癌细胞
肿瘤细胞通过无丝分裂出芽。肿瘤类器官培养物的单细胞生物物理分析将用于
确定多倍体巨型癌细胞和其他侵袭性细胞如何促进 EOC 疾病进展。
在 EOC 肿瘤微环境中,癌细胞经常遇到来自营养物质的代谢应激
剥夺、缺氧和有毒治疗,可以触发代谢重编程以促进细胞存活。
细胞可以经历从糖酵解到氧化磷酸化的代谢转变,以满足能量需求
生存和入侵;这种新陈代谢的转变与高能量线粒体、脂质
液滴消失(脂肪分解)和自噬。这对于 PGCC 来说尤其重要,因为 PGCC 已经增加了
营养需求的部分原因是它们体型较大,表型更具侵入性。此外,EOC 转移形成
来自原发肿瘤脱落到富含脂肪细胞的腹腔中的多细胞聚集体。
先前的研究表明,腹膜脂肪细胞可以将游离脂肪酸转移至EOC细胞,以
为转移性肿瘤的生长提供细胞能量。脂肪酸为 ATP 依赖提供丰富的能量来源
肌动蛋白聚合和基于肌动蛋白的突起对于细胞迁移和转移过程至关重要。
我们假设侵入性 EOC 细胞储存来自外源脂质来源(包括脂肪细胞和脂肪细胞)的能量。
富含脂质的腹水)存在于细胞质脂滴中,并且在代谢应激下利用这些脂滴产生
通过自噬进行侵袭性细胞迁移所需的线粒体 ATP。为了证明这个假设,我们
将使用新颖的 3D 培养模型和动物研究来追踪个体化疗耐药性的代谢变化
EOC 细胞以及研究脂滴代谢的异质性。拟议的研究将调查
代谢和治疗应激在激活脂质代谢(目标 1)和自噬(目标 2)中的作用,以及
确定高侵袭性细胞亚群(包括 PGCC)的代谢改变如何促进
侵袭性肿瘤的发展(目标 3)。拟议的研究将揭示有助于
细胞异质性和代谢失调,以及 EOC 中需要研究的新治疗靶点。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparing the Secretomes of Chemorefractory and Chemoresistant Ovarian Cancer Cell Populations.
比较化疗难治性和化疗耐药性卵巢癌细胞群的分泌组。
- DOI:
- 发表时间:2022-03-10
- 期刊:
- 影响因子:5.2
- 作者:Lee, Amy H;Mejia Peña, Carolina;Dawson, Michelle R
- 通讯作者:Dawson, Michelle R
Spatial Heterogeneity in Cytoskeletal Mechanics Response to TGF-β1 and Hypoxia Mediates Partial Epithelial-to-Meshenchymal Transition in Epithelial Ovarian Cancer Cells.
细胞骨架力学对 TGF-β1 和缺氧反应的空间异质性介导上皮性卵巢癌细胞的部分上皮到间质的转变。
- DOI:
- 发表时间:2023-06-14
- 期刊:
- 影响因子:5.2
- 作者:Ghosh, Deepraj;Hsu, Jeffrey;Soriano, Kylen;Peña, Carolina Mejia;Lee, Amy H;Dizon, Don S;Dawson, Michelle R
- 通讯作者:Dawson, Michelle R
Metronomic and single high-dose paclitaxel treatments produce distinct heterogenous chemoresistant cancer cell populations.
节拍和单次高剂量紫杉醇治疗会产生不同的异质化疗耐药癌细胞群。
- DOI:
- 发表时间:2023-11-06
- 期刊:
- 影响因子:4.6
- 作者:Mejia Peña, Carolina;Skipper, Thomas A;Hsu, Jeffrey;Schechter, Ilexa;Ghosh, Deepraj;Dawson, Michelle R
- 通讯作者:Dawson, Michelle R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle R Dawson其他文献
Force balancing ACT-IN the tumor microenvironment: Cytoskeletal modifications in cancer and stromal cells to promote malignancy
力平衡肿瘤微环境中的 ACT-IN:癌症和基质细胞中的细胞骨架修饰促进恶性肿瘤
- DOI:
10.1016/bs.ircmb.2020.09.005 - 发表时间:
2020-10 - 期刊:
- 影响因子:0
- 作者:
Michelle R Dawson; Botai Xuan - 通讯作者:
Botai Xuan
Michelle R Dawson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle R Dawson', 18)}}的其他基金
Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
- 批准号:
10522428 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:
Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
- 批准号:
10522428 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:
相似海外基金
Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
- 批准号:
10522428 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:
Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
- 批准号:
10522428 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:
Drug Discovery for First-In-Class Myosin 10 Inhibitors as a Novel Target for Glioblastoma
首创肌球蛋白 10 抑制剂作为胶质母细胞瘤新靶标的药物发现
- 批准号:
10595848 - 财政年份:2021
- 资助金额:
$ 37.57万 - 项目类别:
Drug Discovery for First-In-Class Myosin 10 Inhibitors as a Novel Target for Glioblastoma
首创肌球蛋白 10 抑制剂作为胶质母细胞瘤新靶标的药物发现
- 批准号:
10355649 - 财政年份:2021
- 资助金额:
$ 37.57万 - 项目类别:
The role of the Arp2/3 complex in cellular actin dynamics
Arp2/3 复合物在细胞肌动蛋白动力学中的作用
- 批准号:
8750484 - 财政年份:2014
- 资助金额:
$ 37.57万 - 项目类别: