Studying temporal dynamics and regulatory mechanisms of single cells with a unified framework and multi-omics data
利用统一的框架和多组学数据研究单细胞的时间动态和调控机制
基本信息
- 批准号:10678861
- 负责人:
- 金额:$ 34.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:BiologicalCell CommunicationCell physiologyCellsChromatinDataDependenceDimensionsFormulationFutureGene ExpressionGenomicsIndividualKnowledgeLearningLocationMethodsModalityModelingMultiomic DataOrganismOutputPopulationResearch PersonnelResolutionSignal TransductionTechnologyTimecell typedata integrationdesigngene regulatory networkmultimodal datamultiple data typesmultiple omicstechnology developmenttranscription factortranscriptome sequencingtranscriptomics
项目摘要
Single cell genomics technologies have allowed researchers to study differences between single cells. In order
to understand how every cell functions in the whole living organism, cells need to be studied in the context of
both time and space. Researchers would like to learn a comprehensive picture of each single cell, including its
current cell state and predicted future state, and how it interacts with neighboring cells during the temporal
dynamics. So the step after gaining a certain amount of knowledge of single cells is to go from “parts” to
“whole”. This proposal discusses advances that can be brought to the study of both temporal dynamics
and spatial interactions between cells. The theme of this proposal is “integration”.
Existing integrative methods for single cell data focus on two scenarios: 1) integrate the same type of data (eg.
RNA-Seq data) from multiple batches; 2) integrate multiple types of data performed on the same cells, which is
also called multi-modality data or multi-omics data. This proposal highlights concepts and methods to
integrate multi-omics data to understand cell temporal dynamics and regulatory mechanisms, while
taking into account dependency between data modalities, which is rare in current methods. A new
concept of “problem integration”, where related computational formulations can be connected to
provide a consistent and more general picture of a certain aspect of cells, is also presented here.
In order to study different aspects of a cell, different computational problems have been formulated, eg.,
clustering of cells, inference of cell trajectories, inference of gene regulatory networks (GRNs), etc. The idea of
unifying or connecting related computational problems, such that a unified framework can involve or
output the information that is previously used in multiple individual computational problems, is proposed. In
particular, a unified framework for cell temporal dynamics analysis involving related computational
tasks, is presented.
So far the multi-omics integration methods often deploy the integrated data to cluster cells for cell type
identification. Few methods on data integration are designed for temporal analysis with continuous populations,
or to learn biological mechanisms like GRNs. So another direction proposed here is to infer the trajectory of
cells with both gene-expression (scRNA-seq) and chromatin accessibility (scATAC-seq) data; with the inferred
trajectory, the effect of chromatin accessibility on gene-expression can be studied, and GRNs can be
reconstructed while taking into account this effect.
In reality, a gene’s expression level is determined by multiple factors: its transcription factor (TF), its chromatin
accessibility and the signal a cell receives from other neighboring cells through cell-cell interaction. Therefore,
another important dimension to consider about the cells is the spatial location of cells. It is proposed to
ßreconstruct a generalized GRN which models inter-cell regulatory interactions.
单细胞基因组学技术使研究人员能够按顺序研究单细胞之间的差异。
为了了解整个生物体中每个细胞的功能,需要在以下背景下研究细胞
研究人员希望了解每个单细胞的全面情况,包括它的时间和空间。
当前的细胞状态和预测的未来状态,以及它在时间期间如何与邻近细胞相互作用
所以获得一定的单细胞知识后,下一步就是从“零件”到“零件”。
“整体”。这一提议可以应用于时间动力学的研究。
该提案的主题是“整合”。
现有的单细胞数据整合方法主要集中在两种场景:1)整合相同类型的数据(例如
2)整合对同一细胞执行的多种类型的数据,即
该提案也称为多模态数据或多组学数据。
整合多组学数据以了解细胞时间动态和调控机制,同时
考虑到数据模态之间的依赖性,这在当前方法中是罕见的。
“问题集成”的概念,其中相关的计算公式可以连接到
此处还提供了细胞某个方面的一致且更一般的图片。
为了研究细胞的不同方面,已经制定了不同的计算问题,例如,
细胞聚类、细胞轨迹推断、基因调控网络(GRN)推断等。
统一或连接相关的计算问题,以便统一的框架可以涉及或
提出了输出先前在多个单独计算问题中使用的信息。
特别是,涉及相关计算的细胞时间动力学分析的统一框架
任务,提出。
到目前为止,多组学集成方法通常将集成数据部署到针对细胞类型的细胞聚类
很少有数据集成方法是针对连续群体的时间分析而设计的,
或者学习像 GRN 这样的生物机制,所以这里提出的另一个方向是推断 GRN 的轨迹。
具有基因表达 (scRNA-seq) 和染色质可及性 (scATAC-seq) 数据以及推断的细胞;
轨迹,可以研究染色质可及性对基因表达的影响,并且可以
重建时考虑了这种影响。
实际上,基因的表达水平由多种因素决定:转录因子 (TF)、染色质
可访问性以及小区通过小区间交互从其他相邻小区接收的信号。
建议考虑细胞的另一个重要维度是细胞的空间位置。
ß重建一个广义的 GRN,用于模拟细胞间的调控相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiuwei Zhang其他文献
Xiuwei Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiuwei Zhang', 18)}}的其他基金
Studying temporal dynamics and regulatory mechanisms of single cells with a unified framework and multi-omics data
利用统一的框架和多组学数据研究单细胞的时间动态和调控机制
- 批准号:
10276948 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Studying temporal dynamics and regulatory mechanisms of single cells with a unified framework and multi-omics data
利用统一的框架和多组学数据研究单细胞的时间动态和调控机制
- 批准号:
10798818 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Studying temporal dynamics and regulatory mechanisms of single cells with a unified framework and multi-omics data
利用统一的框架和多组学数据研究单细胞的时间动态和调控机制
- 批准号:
10466944 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
相似国自然基金
利用空间转录组技术构建小鼠衰老过程中多个器官的单细胞分辨率时空图谱和通讯网络
- 批准号:32360159
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于单细胞和空间转录组学数据的细胞通讯网络构建研究
- 批准号:62362062
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
JAG1-NOTCH1细胞间通讯侧向活化促进腺样囊性癌腺上皮样转化及肺转移的研究
- 批准号:82372967
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
circPde5a介导线粒体-内质网通讯维持钙稳态改善胰岛β细胞功能的机制研究
- 批准号:82370804
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
细胞通讯轴串扰驱动胚胎造血干细胞发育的机制研究
- 批准号:32300532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
$ 34.67万 - 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Understanding the effects of sleep deprivation on the gut's cellular homeostatic process
了解睡眠不足对肠道细胞稳态过程的影响
- 批准号:
10679154 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Investigating the relationship between the systemic response to infection and tumor initiation and progression in Brca1 breast cancer
研究 Brca1 乳腺癌感染的全身反应与肿瘤发生和进展之间的关系
- 批准号:
10677263 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
- 批准号:
10681766 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别: