Development of a Novel Bioinspired Pelvic Organ Prolapse Repair Graft
新型仿生盆腔器官脱垂修复移植物的开发
基本信息
- 批准号:10678635
- 负责人:
- 金额:$ 4.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAdhesionsAdhesivesAdultBehaviorBiochemicalBiocompatible MaterialsBiological AssayBiomechanicsBiomimeticsBioreactorsCell AdhesionCell Culture TechniquesCell Differentiation processCell-Matrix JunctionCellsCharacteristicsClinicalCollagen FiberComplicationCuesDNADataDevelopmentElastasesElasticityElastin FiberElastomersEncapsulatedEngineeringEnzyme-Linked Immunosorbent AssayEtiologyExcisionExhibitsExtracellular MatrixExtracellular Matrix ProteinsFailureFiberFibroblastsFibrosisFoundationsFutureGoalsGraft EnhancementsGynecologicHumanHydrogelsImageImmune responseIn VitroKnowledgeMeasuresMechanical StressMechanicsMicroscopicMicroscopyModelingMyofibroblastNulliparityOperative Surgical ProceduresOryctolagus cuniculusPathologicPathologyPeptidesPhenotypePhysiciansPhysiologicalPolypropylenesPopulationPorosityPostoperative ComplicationsPredispositionProceduresPropertyProteinsProteomicsPtosisPublic HealthReconstructive Surgical ProceduresRepair MaterialRepeat SurgeryResearchRoleSalesScientistSideSiteStructureTechnical ExpertiseTechniquesTechnologyTestingTherapeuticTissuesTrainingTransferenceVaginaWorkbiomaterial compatibilitybiomechanical testcell transformationcollagenasedefined contributiondesignelastomericexperienceexperimental studyimmunogenicimmunogenicityimplant materialin vitro testinginterestiterative designmanufacturemechanical behaviormechanical propertiesmimicrymultiphoton microscopynonhuman primatenoveloperationpelvic organ prolapseprotein distributionprototyperepairedresponsescaffoldskillssuccesssurgery outcometissue repair
项目摘要
Surgical treatments for pelvic organ prolapse (POP) suffer from high complication and reoperation rates, with
70% of native tissue repair operations failing within five years and the FDA halting commercial use of
graft materials for transvaginal procedures. Many of these problematic grafts are repurposed from non-
gynecologic procedures and cannot mimic the properties of the vagina. Recent cell- or protein-enhanced
experimental grafts also do not bridge the technological gap due to mechanical failure and immunogenic DNA
retention. Given the gap in knowledge regarding engineering POP repair grafts less susceptible to failure, our
objective is to obtain novel data on healthy, non-prolapsed vaginal extracellular matrix (vECM) structure and
function to inform devel-opment of a synthetic biomimetic graft. We will define contributions of collagen and
elastin fibers to the mechan-ical behavior of vaginal tissue and use these data as constraints for iterative design
of elastomeric, biocompatible graft components that provide mechanical support and cell adhesion. Then, we
will probe for fibroblast adhesion and absence of pathologic myofibroblast differentiation on these materials.
Our proposed product design is com-posed of a non-degradable 3D printed elastomer mesh encapsulated by a
3D printed hydrogel coating that can be remodeled by surrounding cells. The goal of this proposal is to test
our hypothesis that mechanical and biochemical cues provided by vECM drive cellular organization and
structure of the healthy vagina and can be replicated in a mechanically competent biomimetic POP repair
graft. This hypothesis will be tested via experi-mental techniques in biomechanics, imaging, additive
manufacturing, and bioreactor cell culture. Aim 1 will fur-ther define the relationship between vaginal elasticity
and vECM proteins and produce an elastomeric mesh that minimizes pathologic myofibroblast transformation
by mimicry of vECM fiber mechanics. This aim will be achieved through vECM elasticity profiling, 3D
printing of biocompatible elastomers to form a mesh with similar mechanical properties, and assessment of
cellular response to this mesh in a tension bioreactor. Aim 2 will define tissue-specific cell adhesion
dynamics and produce a composite 3D printed material capable of partial degradation embedded with
physiologic distributions of key extracellular matrix proteins to promote cell adhe-sion. This aim will be
achieved via microscopy and proteomic analysis of vECM, 3D printing of a partially de-gradable coating
mimicking vECM microstructure and protein distribution, and assessment of cellular adhesion to this coating
in a tension bioreactor. The work detailed through this proposal will answer critical questions regarding the
structure-function properties of vECM and produce two novel materials with therapeutic potential for POP
repair when used together or separately as potential enhancements to commercially available materials. This
research is inspired by my own interests in pathology, surgical outcomes, and host response to engineered
biomaterials. Completing this proposal will provide me with intellectual and technical skills that are essential for
my future work as a physician-scientist at the intersection of biomaterials, pathology, and reconstructive
surgery.
盆腔器官脱垂(POP)的手术治疗并发症和再手术率较高,
70% 的天然组织修复手术在五年内失败,FDA 停止了其商业用途
用于经阴道手术的移植材料。许多有问题的移植物都是从非
妇科手术并且无法模仿阴道的特性。最近的细胞或蛋白质增强
由于机械故障和免疫原性 DNA,实验移植物也无法弥合技术差距
保留。鉴于有关设计不易失败的 POP 修复移植物的知识差距,我们
目的是获得有关健康、非脱垂阴道细胞外基质 (vECM) 结构和
功能为合成仿生移植物的开发提供信息。我们将定义胶原蛋白的贡献和
弹性蛋白纤维对阴道组织的机械行为的影响,并使用这些数据作为迭代设计的约束
提供机械支撑和细胞粘附的弹性体、生物相容性移植组件。然后,我们
将探测这些材料上的成纤维细胞粘附和病理性肌成纤维细胞分化的缺失。
我们提出的产品设计由不可降解的 3D 打印弹性体网格组成,该网格由
3D打印的水凝胶涂层可以被周围的细胞重塑。该提案的目标是测试
我们的假设是,vECM 提供的机械和生化信号驱动细胞组织,
健康阴道的结构,并且可以在具有机械能力的仿生 POP 修复中复制
接枝。这一假设将通过生物力学、成像、添加剂等方面的实验技术进行检验。
制造和生物反应器细胞培养。目标1将进一步定义阴道弹性之间的关系
和 vECM 蛋白并产生弹性网,最大限度地减少病理性肌成纤维细胞转化
通过模拟 vECM 纤维力学。这一目标将通过 vECM 弹性分析、3D
打印生物相容性弹性体以形成具有相似机械性能的网格,并评估
在张力生物反应器中细胞对这种网格的反应。目标 2 将定义组织特异性细胞粘附
动力学并生产出一种复合 3D 打印材料,该材料能够部分降解,嵌入
促进细胞粘附的关键细胞外基质蛋白的生理分布。这个目标将是
通过 vECM 的显微镜和蛋白质组学分析、部分可降解涂层的 3D 打印实现
模拟 vECM 微观结构和蛋白质分布,并评估细胞对该涂层的粘附力
在张力生物反应器中。本提案详细介绍的工作将回答有关以下方面的关键问题:
vECM 的结构-功能特性并产生两种具有 POP 治疗潜力的新型材料
一起或单独使用时可作为市售材料的潜在增强剂进行修复。这
研究的灵感来自于我自己对病理学、手术结果和宿主对工程改造的反应的兴趣
生物材料。完成这项提案将为我提供必要的知识和技术技能
我未来的工作是作为一名医师科学家,从事生物材料、病理学和重建的交叉领域
外科手术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morgan Lee Egnot其他文献
Morgan Lee Egnot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A Novel Semi-autonomous Surgeon-in-the-loop in situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries
一种新型半自主外科医生在环原位机器人生物打印系统,用于体积肌肉丢失损伤的功能和美容恢复
- 批准号:
10473273 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Development of an ultrasound detectable, migration-resistant biopsy marker for improving care in patients with breast cancer
开发超声波可检测、抗迁移的活检标记物,以改善乳腺癌患者的护理
- 批准号:
10585262 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Small Scale Robotics for Automated Dental Biofilm Treatment
用于自动化牙科生物膜治疗的小型机器人
- 批准号:
10427076 - 财政年份:2021
- 资助金额:
$ 4.9万 - 项目类别:
Supplement: Development of an Integrated 3D Human Osteo-Mucosal Model
补充:集成 3D 人体骨粘膜模型的开发
- 批准号:
10403365 - 财政年份:2021
- 资助金额:
$ 4.9万 - 项目类别:
Mechanotransduction by Melusin in Cardiac Hypertrophy
Melusin 在心脏肥大中的机械转导
- 批准号:
10454378 - 财政年份:2020
- 资助金额:
$ 4.9万 - 项目类别: