Harnessing polymicrobial interactions in the catheterized urinary tract to identify novel inhibitors of Proteus mirabilis urease activity
利用插管尿路中的多种微生物相互作用来鉴定奇异变形杆菌尿素酶活性的新型抑制剂
基本信息
- 批准号:10678389
- 负责人:
- 金额:$ 3.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcidsActive SitesAmmoniaAnimalsAntibioticsBacteremiaBacteriaBathingBiological AvailabilityBiomassBladderCarbon DioxideCatheterizationCathetersCellsCessation of lifeClinicalClinical TrialsCommunicable DiseasesCytoplasmDataDevelopmentDoseDrainage procedureEnterococcus faecalisEnzymesExtracellular SpaceFoundationsFutureGlassGoalsHistamineHospitalizationHumanImidazoleIn VitroIncidenceIncubatedIndividualIndwelling CatheterInfectionInnate Immune ResponseInternal MedicineInvestigationIonsKlebsiella aerogenesKnowledgeLaboratoriesLength of StayLeu-GlyMeasuresMentorsMessenger RNAMicrobial BiofilmsModelingMorbidity - disease rateMorganella morganiiNational Research Service AwardsNickelOrganismPainPathogenesisPatient-Focused OutcomesPatientsPhysiciansPhysiologicalPreceptorshipPrecipitationProcessProductionProteinsProteus mirabilisProvidenciaPublicationsResearchRiskScienceScientistSepsisSeveritiesSeverity of illnessStaphylococcus aureusSystemTemperatureTestingTherapeuticTimeTissuesToxic effectTrainingUnited States Food and Drug AdministrationUreaUreaseUrinary CalculiUrinary CatheterizationUrinary tractUrinary tract infectionUrineVirulence FactorsWaterWorkantimicrobialcatheter associated UTIdrug discoveryefficacy evaluationefficacy testingenhancing factorexperimental studyimprovedin vitro Modelin vitro activityinhibitorinsightinstrumentationinterestmedical schoolsmetabolomicsmetalloenzymemicrobialmortalitymouse modelnew therapeutic targetnovelnovel therapeuticspathogenphenylpyruvatepre-clinical assessmentpreventside effecttranslational potentialurinary
项目摘要
Project Summary
Catheter-associated urinary tract infection (CAUTI) is the leading cause of secondary nosocomial bloodstream
infections. Urease-producing organisms such as Proteus mirabilis are common causes of CAUTI and
associated with numerous complications. Urease hydrolyzes urea to ammonia, which raises the urine pH and
causes precipitation of ions into crystals, ultimately leading to catheter encrustation and blockage and urinary
stone formation and increasing the risk of bacteremia, sepsis and death. The only urease inhibitor approved by
the Food and Drug Administration (FDA), acetohydroxamic acid (AHA), shows efficacy in preventing urinary
stone formation but has severe side effects that limit its clinical use. Therefore, alternative strategies are
needed for targeting bacterial urease activity to prevent catheter encrustation and stone formation. In patients
with long-term indwelling catheters, CAUTI is often polymicrobial. As demonstrated in our prior publications
and preliminary data, we found that common constituents of polymicrobial CAUTI secrete molecules that
modulate P. mirabilis urease activity and infection severity. We therefore performed untargeted global
metabolomics analysis on cell-free supernatants of urease-modulating bacterial strains and identified 36
candidate urease dampening metabolites. We validated the activity of four compounds: histamine (CAS 51-45-
6), leucylglycine (CAS 686-50-0), phenylpyruvate (CAS 156-06-9) and imidazole lactate (CAS 14403-45-3).
Our preliminary data suggests that leucylglycine and imidazole lactate dampen urease activity, at least in part,
by acting directly on the urease active site. In contrast, histamine and phenylpyruvate appear to indirectly
inhibit urease activity through an uncharacterized mechanism. The goal of this NRSA F30 proposal is to
determine the mechanism of action of urease modulation and conduct pre-clinical assessment of the
therapeutic potential of these dampening compounds. Aim 1 will determine the mechanism of indirect urease
modulation for histamine and phenylpyruvate and explore whether compounds of different mechanisms of
action have synergistic effects on urease activity when administered in combination against a panel of urease-
producing pathogens. Aim 2 will assess the translational potential of dampening compounds for preventing
Foley catheter encrustation, crystalline biofilm formation, and blockage. The experiments outlined in this
proposal will provide a framework for harnessing polymicrobial interactions for drug discovery and the
development of novel therapeutics to prevent CAUTI associated morbidity and mortality. This work will take
place at the Jacobs School of Medicine and Biomedical Sciences in the laboratory of Dr. Chelsie Armbruster,
who is an expert in CAUTI and microbial pathogenesis research. The training plan is tailored for my
development as a physician-scientist in the field of infectious disease, and includes mentoring by successful
physician-scientists and clinical preceptorships in infectious disease and internal medicine.
项目概要
导管相关性尿路感染(CAUTI)是继发性院内血流的主要原因
感染。产生脲酶的微生物,如奇异变形杆菌,是 CAUTI 的常见原因,
与许多并发症有关。尿素酶将尿素水解成氨,从而提高尿液的 pH 值,
导致离子沉淀成晶体,最终导致导管结垢和堵塞以及尿
结石形成并增加菌血症、败血症和死亡的风险。唯一获批的脲酶抑制剂
美国食品和药物管理局 (FDA) 证明,乙酰异羟肟酸 (AHA) 具有预防尿毒症的功效。
形成结石,但具有严重的副作用,限制了其临床应用。因此,替代策略是
需要针对细菌脲酶活性以防止导管结垢和结石形成。在患者中
长期留置导管的 CAUTI 往往是多种微生物的。正如我们之前的出版物所示
和初步数据,我们发现多种微生物 CAUTI 的常见成分分泌的分子
调节奇异果脲酶活性和感染严重程度。因此,我们进行了非针对性的全球
对脲酶调节菌株的无细胞上清液进行代谢组学分析并鉴定出 36
候选脲酶抑制代谢物。我们验证了四种化合物的活性:组胺(CAS 51-45-
6)、亮氨酰甘氨酸 (CAS 686-50-0)、苯丙酮酸 (CAS 156-06-9) 和咪唑乳酸酯 (CAS 14403-45-3)。
我们的初步数据表明,亮氨酰甘氨酸和咪唑乳酸至少部分抑制脲酶活性,
通过直接作用于脲酶活性位点。相反,组胺和苯丙酮酸似乎间接
通过一种未知的机制抑制脲酶活性。 NRSA F30 提案的目标是
确定脲酶调节的作用机制并进行临床前评估
这些阻尼化合物的治疗潜力。目标1将确定间接脲酶的机制
组胺和苯丙酮酸的调节,并探讨不同机制的化合物是否
当与一组脲酶联合施用时,该作用对脲酶活性具有协同作用
产生病原体。目标 2 将评估阻尼化合物的转化潜力,以预防
福利导管结垢、结晶生物膜形成和堵塞。本文概述的实验
该提案将为利用多微生物相互作用进行药物发现和
开发新疗法以预防 CAUTI 相关的发病率和死亡率。这项工作将需要
位于雅各布斯医学与生物医学科学学院 Chelsie Armbruster 博士的实验室,
他是 CAUTI 和微生物发病机制研究的专家。培训计划是为我量身定制的
作为传染病领域的医师科学家的发展,包括成功人士的指导
传染病和内科领域的医师科学家和临床导师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren Beryl Guterman其他文献
Lauren Beryl Guterman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
The Role of Secondary Interactions Relevant to Biological Reductions of Small Molecules
与小分子生物还原相关的次级相互作用的作用
- 批准号:
10670988 - 财政年份:2020
- 资助金额:
$ 3.73万 - 项目类别:
The Role of Secondary Interactions Relevant to Biological Reductions of Small Molecules
与小分子生物还原相关的次级相互作用的作用
- 批准号:
10246256 - 财政年份:2020
- 资助金额:
$ 3.73万 - 项目类别:
The Role of Secondary Interactions Relevant to Biological Reductions of Small Molecules
与小分子生物还原相关的次级相互作用的作用
- 批准号:
10451600 - 财政年份:2020
- 资助金额:
$ 3.73万 - 项目类别:
Secondary-sphere interactions in the activation of dinitrogen and other small molecules by synthetic models of the nitrogenase FeMo cofactor
通过固氮酶 FeMo 辅因子的合成模型激活二氮和其他小分子的次级球相互作用
- 批准号:
9259188 - 财政年份:2017
- 资助金额:
$ 3.73万 - 项目类别:
Preparation of Artificial Dicopper Enzymes for the Catalytic Reduction of CO2
催化还原CO2人工二铜酶的制备
- 批准号:
9192395 - 财政年份:2016
- 资助金额:
$ 3.73万 - 项目类别: