Application of New Tools for Probing the Roles of Sphingolipids and Cholesterol in Influenza Virus Infection
应用新工具探索鞘脂和胆固醇在流感病毒感染中的作用
基本信息
- 批准号:10678459
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAntiviral AgentsBindingCell LineCell membraneCell physiologyCellsCellular StructuresCessation of lifeCholesterolDataDevelopmentDrug resistanceEndosomesFibroblastsGoalsHealthHemagglutininHerd ImmunityHumanImageImaging TechniquesIndividualInfectionInfluenza A virusInfluenza HemagglutininLabelLife Cycle StagesLipid BilayersLipidsMDCK cellMembraneMembrane LipidsMetabolicModelingMorbidity - disease rateMutateNormal CellOrganellesPeptidesPersonsPharmaceutical PreparationsPlasma CellsPlayPreventionProductionPublic HealthPublishingReportingResearchResolutionRoleSiteSpectrometry, Mass, Secondary IonSphingolipidsSphingomyelinsSystemTechniquesTestingThree-Dimensional ImageTransfectionVaccinationVaccinesVariantViralViral ProteinsVirionVirusVirus AssemblyVirus DiseasesVirus ReplicationVisualizationcombatendosome membraneenv Gene Productsimage reconstructioninfluenza infectioninfluenzavirusinnovationinsightinstrumentisotope incorporationmass spectrometric imagingmembrane assemblymimeticsmodels and simulationmolecular dynamicsmortalitynovelpandemic diseasestable isotopetooltraffickingvirus envelope
项目摘要
PROJECT SUMMARY
Influenza A virus (IAV) is a major public health threat that causes 290,000 to 650,000 deaths per year worldwide,
while pandemic strains have caused millions of deaths. Despite the existence of antiviral drugs and vaccines,
IAV still causes high mortality and morbidity due to its ability to rapidly mutate and escape herd immunity.
Identification of the host cell components that promote infection when present at high levels but sustain normal
cell function at lower levels could lead to the development of new types of antiviral therapeutics with universal
strain potency and decreased drug resistance. Sphingolipids and cholesterol are potential targets because IAV
replication and infectivity is correlated with their abundances in the host cell. Why high levels of sphingolipids
and cholesterol seem to promote IAV infection remains a mystery. Likewise, which steps in the virus lifecycle
require these membrane components have not been identified. The research proposed herein will use new
modeling and experimental strategies to investigate the roles of sphingolipids and cholesterol in the IAV lifecycle.
These cutting-edge strategies include molecular dynamic (MD) simulations for modeling IAV fusion peptide
(HAfp) insertion into membranes, and a high-resolution secondary ion mass spectrometry (SIMS) technique for
imaging cholesterol and sphingolipids on and within cells. Three aims that use these techniques are proposed.
In Aim 1 the molecular interactions between different lipid species, cholesterol, and the HAfp will be
characterized by using MD simulations to determine how these cholesterol and sphingolipids affect HAfp
insertion into the endosomal membrane. Completion of this aim will provide understanding of how the HAfp
interacts with distinct membrane lipids, which is a necessary perquisite for elucidating the roles of membrane
composition in IAV fusion during entry. In Aim 2, the sphingolipid and cholesterol abundances at the sites where
the IAV assembles and buds from the host cell plasma membrane will be identified by using a combination of
metabolic rare stable isotope incorporation, immunolabeling, and high-resolution SIMS imaging. This will be a
decisive test of the hypothesis that the influenza A virus assembles and buds from plasma membrane domains
that are enriched with cholesterol and sphingolipids. In Aim 3, high-resolution SIMS depth profiling, an innovative
3D image reconstruction tool developed by sponsor’s lab, and statistical hypothesis tests will be used to visualize
and compare the relative abundances of cholesterol in compartments that contain the influenza virus envelope
protein, hemagglutinin (HA), within IAV-infected and uninfected cells. These studies will test the hypothesis that
cholesterol levels are elevated in the compartments involved in trafficking newly synthesized IAV proteins to the
plasma membrane for assembly into progeny virus particles. Successful completion of these aims may identify
key host cell factors that might be exploited to combat IAV infection.
项目概要
甲型流感病毒 (IAV) 是一种主要的公共卫生威胁,每年在全球造成 290,000 至 650,000 人死亡,
尽管存在抗病毒药物和疫苗,但大流行毒株已导致数百万人死亡。
由于 IAV 具有快速变异和逃避群体免疫的能力,它仍然导致很高的死亡率和发病率。
鉴定在高水平存在但维持正常时促进感染的宿主细胞成分
较低水平的细胞功能可能会导致新型通用抗病毒疗法的开发
菌株效力和耐药性降低是 IAV 的潜在目标。
复制和感染性与其在宿主细胞中的丰度相关。
胆固醇似乎会促进 IAV 感染,同样,病毒生命周期中的哪个步骤仍然是个谜。
需要这些膜组件尚未被识别,本文提出的研究将使用新的。
研究鞘脂和胆固醇在 IAV 生命周期中的作用的建模和实验策略。
这些尖端策略包括用于 IAV 融合肽建模的分子动力学 (MD) 模拟
(HAfp)插入膜中,以及高分辨率二次离子质谱(SIMS)技术
提出了使用这些技术的三个目标。
在目标 1 中,不同脂质种类、胆固醇和 HAfp 之间的分子相互作用将是
其特点是使用 MD 模拟来确定这些胆固醇和鞘脂如何影响 HAfp
完成这一目标将有助于了解 HAfp 是如何插入内体膜的。
与不同的膜脂相互作用,这是阐明膜的作用的必要条件
在目标 2 中,IAV 融合的组成位点的鞘脂和胆固醇丰度。
来自宿主细胞质膜的 IAV 组装和芽将通过使用以下组合来识别
代谢稀有稳定同位素掺入、免疫标记和高分辨率 SIMS 成像。
确定了甲型流感病毒从质膜结构域组装和出芽的假设的检验
富含胆固醇和鞘脂 在 Aim 3 中,高分辨率 SIMS 深度分析是一项创新。
由赞助商实验室开发的3D图像重建工具,将使用统计假设检验来可视化
并比较含有流感病毒的隔室中胆固醇的相对丰度
这些研究将检验 IAV 感染和未感染细胞内的蛋白质、血凝素 (HA)。
在参与将新合成的 IAV 蛋白运输到体内的区室中,胆固醇水平升高。
用于组装成子代病毒颗粒的质膜可以成功完成这些目标。
可用于对抗 IAV 感染的关键宿主细胞因子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melanie Brunet Torres其他文献
Melanie Brunet Torres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于激发植物免疫为导向的嘧啶酮类高效抗病毒剂设计合成及作用机制研究
- 批准号:21807037
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
云南地方晾晒烟中的内源性抗烟草花叶病毒活性成分研究
- 批准号:31860100
- 批准年份:2018
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
两种植物中抗烟草花叶病毒先导化合物的结构优化、构效关系及作用机制研究
- 批准号:31760089
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
基于kealiinine类海洋生物碱的新型抗病毒剂的设计合成、构效关系及作用机制研究
- 批准号:21772145
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
生态农药的分子设计与作用机制
- 批准号:21732002
- 批准年份:2017
- 资助金额:300.0 万元
- 项目类别:重点项目
相似海外基金
Dissecting the peptide motifs controlling coronavirus infections
剖析控制冠状病毒感染的肽基序
- 批准号:
10648391 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
- 批准号:
10750627 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
- 批准号:
10710974 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Hepatotoxic mechanisms of anti-HIV- and anti-COVID-19 drugs and substance use disorders
抗 HIV 和抗 COVID-19 药物和物质使用障碍的肝毒性机制
- 批准号:
10684434 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Investigating the conformational changes of the portal protein that drive DNA packaging in a dsDNA virus
研究双链 DNA 病毒中驱动 DNA 包装的门户蛋白的构象变化
- 批准号:
10677356 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: