Modulation of gait dynamics post-stroke
中风后步态动力学的调节
基本信息
- 批准号:10677559
- 负责人:
- 金额:$ 7.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultBiofeedbackBiomechanicsCerebral PalsyCharacteristicsChildClassificationClinicalClinical TrialsComplementComplexComputational TechniqueDataData SetExhibitsExperimental DesignsFunctional disorderGaitGait speedGoalsHemiplegiaImpairmentIndividualIndividual DifferencesIndividualityJointsLeadLimb structureLiteratureMethodologyModelingMotionMovementMuscleNervous SystemNervous System TraumaNetwork-basedNeuromechanicsParesisPatternPrediction of Response to TherapyRehabilitation therapyResearchSeriesSpeedStrokeSubgroupTechniquesTestingTimeTrainingVisualWalkingWorkcareerdata-driven modeldesignflexibilitygait rehabilitationimprovedinnovationmodel designneuralnovelpatient populationpersonalized medicinepost strokerecurrent neural networkrehabilitation technologyresponseskillsstroke survivortreadmilltreatment responderstreatment responsewalking speed
项目摘要
PROJECT SUMMARY/ABSTRACT
My career goal is to improve the personalization of stroke gait rehabilitation and develop novel rehabilitation
technologies using neuromechanics-based data-driven modeling in conjunction with hypothesis-driven
experimental design. The proposed research aims to understand how neural constraints impact stroke survivors’
ability to coordinate execution-level joint dynamics to flexibly modulate whole-body center-of-mass (COM)
dynamics between slow inverted pendulum and fast spring-mass dynamics during walking; a task critical to
achieving stable, efficient, and rapid movement. My preliminary data in a single individual suggest that COM
dynamics are asymmetric post-stroke, but further characterization of joint coordination and COM dynamics is
needed to understand their relationship with interindividual and inter-limb differences in post-stroke walking
function and treatment responses. Two major methodological barriers to characterizing these relationships are
a lack of 1) metrics and techniques to encode complex, individual-specific gait dynamics post-stroke, and 2) long
time-series datasets containing diverse movement patterns needed to test neuromechanical hypotheses about
gait. To address these challenges, I will work with Sponsor Ting and Co-Sponsor Berman to extend data-
driven techniques developed in my doctoral research to identify COM dynamics and characterize their
relationships to joint dynamics; with Sponsor Ting and Co-Sponsor Kesar I will design and collect new datasets
from stroke survivors of diverse movement patterns using biofeedback during walking. Aim 1: Test whether
interindividual and inter-limb differences in COM dynamics post-stroke are associated with walking speed. I will
evaluate the similarity of baseline post-stroke COM dynamics to able-bodied (AB) adults and between paretic
and non-paretic limbs. Further, I will examine whether the paretic-limb transitions from inverted pendulum to
spring-mass dynamics at faster treadmill speeds, decreasing asymmetry in COM dynamics. Aim 2: Characterize
reductions in stroke survivors’ ability to modulate joint dynamics to achieve desired COM dynamics. Using visual
biofeedback to prescribe COM dynamics, I will test whether stroke survivors have reduced ability to emulate
COM dynamics compared to AB adults and determine if joint dynamics characterize COM dynamics less
accurately in stroke survivors than AB adults. Aim 3: Test whether sub-groups of individuals with similar COM
and joint dynamics predict biofeedback responses more accurately than discrete metrics. I will test whether,
across a range of biofeedback-prescribed COM dynamics, baseline COM and joint dynamics can classify
changes in joint dynamics with biofeedback more accurately than discrete clinical or biomechanical variables. I
will also have training in clinical trials by participating in Sponsor Kesar’s ongoing gait rehabilitation study. The
proposed research and training will complement my doctoral skillset, preparing me to lead independent research
combining experimental design and computational techniques to discover neuromechanical mechanisms
underlying gait dysfunction and develop novel gait rehabilitation for individuals with neurological injuries.
项目概要/摘要
我的职业目标是提高中风步态康复的个性化并开发新型康复
使用基于神经力学的数据驱动建模与假设驱动相结合的技术
拟议的研究旨在了解神经约束如何影响中风幸存者。
协调执行级关节动态以灵活调节全身质心 (COM) 的能力
步行过程中缓慢倒立摆和快速弹簧质量动力学之间的动力学;
实现稳定、高效、快速的运动。我对单个个体的初步数据表明,COM
中风后动力学是不对称的,但关节协调和 COM 动力学的进一步表征是
需要了解它们与中风后行走的个体间和肢体间差异的关系
描述这些关系的两个主要方法障碍是
缺乏 1) 编码复杂的、个体特定的中风后步态动态的指标和技术,以及 2) 长步态
包含测试神经力学假设所需的不同运动模式的时间序列数据集
为了应对这些挑战,我将与发起人 Ting 和联合发起人 Berman 合作扩展数据-
我在博士研究中开发的驱动技术,用于识别 COM 动态并表征其特征
与联合动态的关系;我将与赞助商 Ting 和联合赞助商 Kesar 一起设计和收集新的数据集
目标 1:测试是否存在不同运动模式的中风幸存者。
中风后 COM 动力学的个体间和肢体间差异与步行速度有关。
评估中风后 COM 动态与健全 (AB) 成年人以及瘫痪患者之间基线的相似性
此外,我将检查瘫痪肢体是否从倒立摆过渡。
跑步机速度更快时的弹簧质量动力学,减少 COM 动力学中的不对称性。
中风幸存者使用视觉调节关节动态以实现所需 COM 动态的能力下降。
生物反馈来规定 COM 动态,我将测试中风幸存者的模仿能力是否下降
COM 动力学与 AB 成人相比,并确定关节动力学是否较少表征 COM 动力学
目标 3:测试是否存在具有相似 COM 的个体亚组。
和关节动力学比离散指标更准确地预测生物反馈反应,我将测试是否,
跨一系列生物反馈规定的 COM 动力学、基线 COM 和关节动力学可以分类
生物反馈对关节动力学的变化比离散的临床或生物力学变量更准确。
还将通过参加赞助商 Kesar 正在进行的步态康复研究来接受临床试验培训。
拟议的研究和培训将补充我的博士技能,为我领导独立研究做好准备
结合实验设计和计算技术来发现神经力学机制
潜在的步态功能障碍,并为神经损伤患者开发新的步态康复。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Motor and cognitive deficits limit the ability to flexibly modulate spatiotemporal gait features in older adults with mild cognitive impairment.
运动和认知缺陷限制了患有轻度认知障碍的老年人灵活调节时空步态特征的能力。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Rosenberg, Michael C;Slusarenko, Alexandra;Cao, Ke;Lucas McKay, J;Emmery, Laura;Kesar, Trisha M;Hackney, Madeleine E
- 通讯作者:Hackney, Madeleine E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Charles Rosenberg其他文献
Michael Charles Rosenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implantable Self-Powered Biofeedback Vagus Nerve Stimulator for Weight Control
用于体重控制的植入式自供电生物反馈迷走神经刺激器
- 批准号:
10801765 - 财政年份:2023
- 资助金额:
$ 7.41万 - 项目类别:
A framework for feasible translation to enhance foot and ankle function in aging and mobility
一个可行的翻译框架,以增强足部和脚踝在衰老和活动中的功能
- 批准号:
10704158 - 财政年份:2022
- 资助金额:
$ 7.41万 - 项目类别:
Walking Function in Individuals with Diabetic Peripheral Neuropathy: Biomechanical Mechanisms and Implications for Clinical Outcomes and Gait Retraining
糖尿病周围神经病变患者的步行功能:生物力学机制以及对临床结果和步态再训练的影响
- 批准号:
10688297 - 财政年份:2022
- 资助金额:
$ 7.41万 - 项目类别:
Using Wearable Technology to Develop Biomarker-Driven Intervention for Alcohol-Facilitated Intimate Partner Violence
使用可穿戴技术开发生物标记驱动的干预措施,以应对酒精引发的亲密伴侣暴力
- 批准号:
10577750 - 财政年份:2022
- 资助金额:
$ 7.41万 - 项目类别: