Uteroplacental Vasculature and Fetal Growth after Plastic Particle Exposure
塑料颗粒暴露后的子宫胎盘脉管系统和胎儿生长
基本信息
- 批准号:10677264
- 负责人:
- 金额:$ 4.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAdverse effectsAffectAirAir PollutionAnimalsAreaArteriesBiologicalBiologyBloodBlood VesselsBlood flowCardiometabolic DiseaseCardiovascular systemCell physiologyDataDevelopmentDiffusionDiseaseDistalEndothelial CellsEndotheliumExposure toFellowshipFemaleFetal DevelopmentFetal GrowthFetal Growth RetardationFetal TissuesFetal WeightFetusGeneral PopulationGrantGrowthHealthHourHumanImmunohistochemistryImpairmentInhalationInternationalInterventionInvadedKnowledgeLaboratoriesLabyrinthLungMaternal-Fetal ExchangeMeasuresMechanicsMediatorModelingMolecular TargetMorphogenesisMothersMyographyNOS3 geneNitric OxideNutrientNylonsOccupational ExposureOrganOxygenParticulate MatterPathway interactionsPerinatal mortality demographicsPhysiologyPlacentaPlacentationPlasticsPredispositionPregnancyPregnant WomenPrincipal InvestigatorProcessRattusResearchRisk AssessmentSignal TransductionSiteSmooth Muscle MyocytesSpiral Artery of the EndometriumStructureStructure of parenchyma of lungSurfaceTechniquesTestingTherapeutic InterventionTissuesToxicologyTrainingTranslatingUterusVascular Smooth MuscleVasodilationVulnerable PopulationsWeightair filterangiogenesisarteriolebiomass fuelcardiometabolic riskconstrictionendothelial dysfunctionhemodynamicsindoor particulate matterinfant morbidityinfant morbidity/mortalityintravital microscopymigrationnanoparticleparticleparticle exposurepharmacologicpregnantpressureprotein expressionradial arteryreproductivetargeted treatmenttherapeutic targettool
项目摘要
PROJECT SUMMARY/ABSTRACT
In humans, fetal growth restriction (FGR) and impaired placental development are associated with infant
morbidity and mortality and susceptibility to adulthood diseases. In pregnant animals, inhalation of particles alters
the functionality of the uteroplacental vasculature, leading to impaired placental and fetal growth. Particulate
matter (PM) can target the uteroplacental vasculature in multiple ways. One way by which particles can disrupt
the uteroplacental vasculature is by impairing vasodilation. During pregnancy, uterine vessels must be sensitive
to vasodilation mediators to meet the dynamic needs of the placenta and fetus. Central to this vasoreactivity is
the endothelial cell that translates signals from the blood to the vascular smooth muscle cells, leading to vessel
dilation or constriction. Additionally, the placenta is a critical organ for the diffusion of oxygen and transport of
nutrients to the developing fetus. PM can impair development of the placental vasculature that allows for
maternal-fetal exchange and decrease the ratio of placental-to-fetal tissue, known as placental efficiency. Our
laboratory recently showed that plastic particles can translocate through the placenta to the fetus after pulmonary
exposure, suggesting that the particles directly interact with the uteroplacental vasculature. The environmental
burden of plastics is exponentially increasing. Micro’ nanoplastics (MNPs) represent a ubiquitous exposure
concern for the general population and for vulnerable groups, such as pregnant women, it is important to
elucidate how MNP inhalation may affect fetal development. These particles are generated and suspended in
the air by the combustion of bulk plastic or through slower processes like mechanical degradation where a bulk
plastic fragments into small pieces in the microparticle (>100 nm) and nanoparticle (<100 nm) size range. Our
preliminary data demonstrates that MNP inhalation in virgin female rats disrupts uterine vascular reactivity.
Furthermore, using a pregnancy model of MNP inhalation throughout gestation, we observed FGR, increased
placental weight, and decreased placental efficiency suggesting the placenta is a target organ of MNPs in rats.
Therefore, the central hypothesis of this proposal is that maternal inhalation of MNP throughout gestation
decreases placental efficiency by impairing uterine vasodilation and disrupting development of the placental
vasculature in rats. The aims in this proposal will investigate the mechanisms by which repeated maternal MNP
inhalation dysregulates the uterine vasculature and placental development, thus contributing to FGR. Aim 1 will
identify mechanisms of impaired uterine vascular reactivity and how endothelial cell function is altered after
maternal MNP exposure. Aim 2 will determine how maternal MNP inhalation modifies development of the
placental vasculature using histopathological analyses and immunohistochemistry. This research will identify
mechanisms of MNP induced FGR and present potential targets for therapeutic intervention. By completing the
proposed research, courses, and training the Principal Investigator will be trained independently conduct state-
of-the-art experimental techniques and carry out cardiovascular and reproductive toxicological research.
项目概要/摘要
在人类中,胎儿生长受限(FGR)和胎盘发育受损与婴儿
吸入颗粒会改变怀孕动物的发病率和死亡率以及对成年疾病的易感性。
子宫胎盘脉管系统的功能,导致胎盘和胎儿生长受损。
物质 (PM) 可以通过多种方式靶向子宫胎盘脉管系统,这是粒子破坏的一种方式。
子宫胎盘脉管系统是通过损害血管舒张而产生的。在怀孕期间,子宫血管必须是敏感的。
血管舒张介质以满足胎盘和胎儿的动态需求是这种血管反应性的核心。
内皮细胞将信号从血液翻译至血管平滑肌细胞,从而导致血管
此外,胎盘是氧气扩散和运输的关键器官。
胎儿发育所需的营养物质会损害胎盘脉管系统的发育。
母胎交换并降低胎盘与胎儿组织的比率,称为胎盘效率。
实验室最近表明,塑料颗粒在肺部感染后可以通过胎盘转移到胎儿体内。
暴露,表明颗粒直接与子宫胎盘血管系统相互作用。
塑料的负担正在呈指数级增加。微型纳米塑料(MNP)代表着无处不在的暴露。
考虑到普通民众和孕妇等弱势群体,重要的是
阐明吸入 MNP 如何影响胎儿发育。
通过散装塑料的燃烧或通过机械降解等较慢的过程(其中散装塑料)
我们的塑料碎片可分为微米颗粒(>100 nm)和纳米颗粒(<100 nm)尺寸范围内的小块。
初步数据表明,处女雌性大鼠吸入 MNP 会破坏子宫血管反应性。
此外,使用整个妊娠期间吸入 MNP 的妊娠模型,我们观察到 FGR、增加
胎盘重量和胎盘效率降低表明胎盘是大鼠 MNP 的靶器官。
因此,该提案的中心假设是母亲在整个妊娠期间吸入 MNP
通过损害子宫血管舒张和破坏胎盘发育来降低胎盘效率
本提案的目的是研究重复母体 MNP 的机制。
吸入会导致子宫脉管系统和胎盘发育失调,从而导致 FGR 目标 1。
确定子宫血管反应性受损的机制以及术后内皮细胞功能如何
目标 2 将确定母体 MNP 吸入如何改变胎儿的发育。
这项研究将使用组织病理学分析和免疫组织化学来识别胎盘脉管系统。
通过完成 MNP 诱导 FGR 的机制并提出治疗干预的潜在目标。
拟议的研究、课程和培训首席研究员将接受独立培训,进行国家-
最先进的实验技术并开展心血管和生殖毒理学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chelsea Cary其他文献
Chelsea Cary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a phenotypic screening assay for novel compounds that inhibit peripheral pain-sensing neurons
开发抑制外周痛觉神经元的新型化合物的表型筛选试验
- 批准号:
10650640 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
- 批准号:
10637981 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
- 批准号:
10819340 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM) Research Core & MHD-CE
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686545 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 4.29万 - 项目类别: