Interplay between meningeal lymphatics, high-density lipoproteins and border macrophages in cerebral amyloid angiopathy
脑淀粉样血管病中脑膜淋巴管、高密度脂蛋白和边界巨噬细胞之间的相互作用
基本信息
- 批准号:10674681
- 负责人:
- 金额:$ 57.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATP binding cassette transporter 1AddressAffectAlzheimer&aposs DiseaseAmyloid beta-ProteinBehaviorBile fluidBloodBlood CirculationBlood VesselsBlood flowBrainCell membraneCellsCerebral Amyloid AngiopathyCerebral hemisphere hemorrhageCholesterolChronicCouplingDataDendritic CellsDepositionDiseaseDisease ProgressionEndocytosisExperimental ModelsGeneticHealthHigh Density LipoproteinsHourHumanImageImpairmentInvestigational TherapiesKnock-in MouseLaboratoriesLeptomeningesLesionLightLinkLipoproteinsLiquid substanceLiteratureLiverLymphLymphaticMacrophageMediatingMediatorMembrane Transport ProteinsMeningealMeningeal lymphatic systemMeningesModelingMusNatural ImmunityOrganPenetrationPeptidesPhagocytosisPhenotypePlasmaProcessProteinsRoleSignal TransductionSiteTestingTherapeutic InterventionThinnessTissuesTunica AdventitiaVascular Diseasesabeta depositionapolipoprotein E-4arterioleblood-brain barrier crossingbrain parenchymaconfocal imagingcraniumepidemiology studyimprovedinterestinterstitialintravital imaginglymph flowlymphatic circulationlymphatic vasculaturemonocytemouse modelneuroimmunologyporcine modelrestraintreverse cholesterol transportspatial relationshiptooltraffickingtwo-photonvascular inflammationβ-amyloid burden
项目摘要
ABSTRACT – project 3
The Randolph lab studies vascular inflammation and has a long-standing interest in the egress of cells and
molecules that impact chronic vascular diseases. With a track record in studying the trafficking of monocytes
(and the cells they become), we later began studying the transit of apoA1-enriched high-density lipoprotein
(HDLA1) through tissues. We demonstrated that liver-derived HDLA1 leaves most tissue parenchyma through
lymphatics to mediate reverse cholesterol transport, a process whereby cholesterol from cells in various body
organs is picked up by HDLA1 and returned to the liver for disposal in bile. Reverse cholesterol transport
regulates macrophage phenotype in various diseases, as macrophages readily accumulate cholesterol. On the
other hand, macrophages also efficiently transfer cholesterol to HDLA1 via the membrane transporter ABCA1 in
a process called cholesterol efflux. If cholesterol efflux is impaired, for example from reduction of HDLA1,
cholesterol accumulates in signaling domains at the plasma membrane to affect the phenotype and activation
status of macrophages. Overall, macrophages and lymphatics provide two distinct means for tissue clearance
of metabolites, debris, and other mediators--one via endocytosis or phagocytosis and the other via fluid
transport--and HDLA1 bridges these mechanisms. We have developed and validated a knock-in mouse line
expressing photoactivatable GFP linked to apoA1, to quantitatively track endogenous HDLA1 after photo-
activating a tissue of interest. Although little HDLA1 crosses the blood-brain barrier to enter the brain, HDLA1
enters the meningeal interstitium. Indeed, preliminary data reveal that the HDLA1 can be tagged by shining 405
nm light on the thinned skullbone as the HDLA1 passes through the meninges. Phototagged meningeal HDLA1
reaches the blood circulation one hour later, but only under conditions when the meningeal draining lymphatic
vasculature is intact. Epidemiological studies in cerebral amyloid angiopathy (CAA), a disease broadly
associated with Alzheimer’s disease (AD) and characterized by A deposition in the adventitia of the
penetrating and meningeal arterioles, identify HDLA1 levels as inversely correlated with cerebral hemorrhage
associated with CAA. A connection between HDLA1 and CAA is directly supported by genetic and experimental
therapeutic interventions in mice. However, detailed mechanistic studies to unravel how HDLA1 affects CAA
have not been conducted. Using the 5XE4fl/fl murine model of CAA developed by the Holtzman laboratory, we
will herein focus on unraveling the role of HDLA1 in CAA by coupling use of our HDLA1 phototag tool with
approaches to interrogate its connection to lymphatic and blood flow (aim 1), to monocyte/macrophage
phenotype (aim 2), and to disease progression overall (aim 3). We here will test the hypothesis that HDLA1
restrains CAA and that its meningeal transit is impaired during CAA. By contrast, in states of health, we
propose that it functionally maintains meningeal interstitial flow into lymphatics by interacting with and
governing the phenotype of meningeal macrophages, including parenchymal border macrophages (PBM).
摘要 – 项目 3
伦道夫实验室研究血管炎症,长期以来对细胞的流出和
影响慢性血管疾病的分子,在研究单核细胞的运输方面拥有良好的记录。
(以及它们变成的细胞),我们后来开始研究富含 apoA1 的高密度脂蛋白的转运
(HDLA1) 通过组织 我们证明肝源性 HDLA1 通过组织离开大部分组织实质。
淋巴管介导反向胆固醇转运,胆固醇从各个身体的细胞中排出的过程
器官被 HDLA1 拾取并返回肝脏,通过胆汁进行反向胆固醇转运。
调节各种疾病中的巨噬细胞表型,因为巨噬细胞很容易积聚胆固醇。
另一方面,巨噬细胞还通过膜转运蛋白 ABCA1 有效地将胆固醇转移至 HDLA1
一个称为胆固醇流出的过程 如果胆固醇流出受到损害,例如 HDLA1 减少,
胆固醇在质膜信号传导域积聚,影响表型和激活
总体而言,巨噬细胞和淋巴管提供两种不同的组织清除方式。
代谢物、碎片和其他介质——一种通过内吞作用或吞噬作用,另一种通过液体
运输——HDLA1 桥接了这些机制。我们已经开发并验证了敲入小鼠系。
表达与 apoA1 连接的可光激活 GFP,以定量追踪光后内源性 HDLA1
虽然 HDLA1 很少能穿过血脑屏障进入大脑,但 HDLA1 会激活感兴趣的组织。
事实上,初步数据显示HDLA1可以被闪亮405标记。
当 HDLA1 穿过带有照片标记的脑膜 HDLA1 时,纳米光照射在变薄的颅骨上。
一小时后到达血液循环,但前提是脑膜引流淋巴管
脑淀粉样血管病(CAA)是一种广泛的疾病,血管系统的流行病学研究是完整的。
与阿尔茨海默病 (AD) 相关,其特征是 A 沉积在外膜中
穿透动脉和脑膜动脉,确定 HDLA1 水平与脑出血呈负相关
HDLA1 和 CAA 之间的联系得到遗传和实验的直接支持。
然而,详细的机制研究揭示了 HDLA1 如何影响 CAA。
尚未使用 Holtzman 实验室开发的 5XE4fl/fl 小鼠 CAA 模型进行。
本文将重点通过将我们的 HDLA1 照片标签工具与
询问其与淋巴和血流(目标 1)、与单核细胞/巨噬细胞的联系的方法
表型(目标 2),以及总体疾病进展(目标 3),我们将在这里检验 HDLA1 的假设。
抑制 CAA 并且其脑膜运输在 CAA 期间受损。相比之下,在健康状态下,我们
提出它通过与 和 相互作用来功能性地维持脑膜间质流入淋巴管
控制脑膜巨噬细胞的表型,包括实质边界巨噬细胞(PBM)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gwendalyn J Randolph其他文献
Gwendalyn J Randolph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gwendalyn J Randolph', 18)}}的其他基金
Mechanisms that alter lymphatic transport in inflammatory bowel disease
改变炎症性肠病淋巴运输的机制
- 批准号:
10565928 - 财政年份:2022
- 资助金额:
$ 57.84万 - 项目类别:
Mechanisms that alter lymphatic transport in inflammatory bowel disease
改变炎症性肠病淋巴运输的机制
- 批准号:
10420703 - 财政年份:2022
- 资助金额:
$ 57.84万 - 项目类别:
Defining the lymphatic basis of protein losing enteropathy after Fontan palliation or inflammatory gut disease
定义 Fontan 姑息治疗或炎症性肠道疾病后蛋白质丢失性肠病的淋巴基础
- 批准号:
10325733 - 财政年份:2021
- 资助金额:
$ 57.84万 - 项目类别:
Gut region-specific mechanisms that limit dissemination of microbial signals from the intestine
限制肠道微生物信号传播的肠道区域特异性机制
- 批准号:
10665044 - 财政年份:2021
- 资助金额:
$ 57.84万 - 项目类别:
Gut region-specific mechanisms that limit dissemination of microbial signals from the intestine
限制肠道微生物信号传播的肠道区域特异性机制
- 批准号:
10283039 - 财政年份:2021
- 资助金额:
$ 57.84万 - 项目类别:
Defining the lymphatic basis of protein losing enteropathy after Fontan palliation or inflammatory gut disease
定义 Fontan 姑息治疗或炎症性肠道疾病后蛋白质丢失性肠病的淋巴基础
- 批准号:
10661777 - 财政年份:2021
- 资助金额:
$ 57.84万 - 项目类别:
Gut region-specific mechanisms that limit dissemination of microbial signals from the intestine
限制肠道微生物信号传播的肠道区域特异性机制
- 批准号:
10665044 - 财政年份:2021
- 资助金额:
$ 57.84万 - 项目类别:
DIFFERENTIATION AND FUNCTION OF MONOCYTES AND MACROPHAGES
单核细胞和巨噬细胞的分化和功能
- 批准号:
10158696 - 财政年份:2020
- 资助金额:
$ 57.84万 - 项目类别:
Cellular and spatial mechanisms underlying how inflammatory cytokines impact postprandial glucose responses in health and disease
炎症细胞因子如何影响健康和疾病中餐后葡萄糖反应的细胞和空间机制
- 批准号:
10064841 - 财政年份:2020
- 资助金额:
$ 57.84万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Novel Transcriptional & Post-Transcriptional Regulators of Endothelial Metabolism in Atherosclerosis
小说转录
- 批准号:
10389265 - 财政年份:2022
- 资助金额:
$ 57.84万 - 项目类别:
Novel Transcriptional & Post-Transcriptional Regulators of Endothelial Metabolism in Atherosclerosis
小说转录
- 批准号:
10683705 - 财政年份:2022
- 资助金额:
$ 57.84万 - 项目类别:
Microsomal Transfer Protein Modulates Lipoprotein Metabolism and Retinal lipid Homeostasis
微粒体转移蛋白调节脂蛋白代谢和视网膜脂质稳态
- 批准号:
10372593 - 财政年份:2022
- 资助金额:
$ 57.84万 - 项目类别:
Novel Transcriptional & Post-Transcriptional Regulators of Endothelial Metabolism in Atherosclerosis
小说转录
- 批准号:
10389265 - 财政年份:2022
- 资助金额:
$ 57.84万 - 项目类别: