Mechanisms of YAP1-driven resistance to KRAS-G12C inhibition
YAP1 驱动的 KRAS-G12C 抑制抵抗机制
基本信息
- 批准号:10675482
- 负责人:
- 金额:$ 3.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAntineoplastic AgentsAppearanceAutophagocytosisBIRC5 geneBRAF geneBindingCancer EtiologyCancer ModelCarbonCell LineCellsCessation of lifeClinicalColorectalColorectal CancerCombined Modality TherapyCytostaticsDNA Binding DomainDependenceDrug resistanceExhibitsFamilyFosteringFoundationsGene ExpressionGenesGeneticGenetic TranscriptionGlycolysisGoalsGrowthKRAS2 geneLungMAP Kinase GeneMAP2K1 geneMEKsMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of pancreasMapsMediatingMetabolismMitochondriaMitogen-Activated Protein KinasesModelingMutationNutrientOncogenesOncogenicOncoproteinsOverlapping GenesPancreatic Ductal AdenocarcinomaPathway interactionsPatientsProcessPublishingRelapseReportingResearchResearch PersonnelResistanceRoleSignal TransductionTestingTherapeuticTranscription CoactivatorTranscriptional RegulationTumor Suppressor Proteinsaddictioncancer cellcancer therapycareer developmentclinical applicationclinical candidatecytotoxicdrug developmentdrug discoverygenetic signatureinhibitormutantoverexpressionpancreatic ductal adenocarcinoma cellpharmacologicresearch clinical testingresistance mechanismtargeted treatmenttherapeutic targettranscription factortreatment strategytumortumor metabolism
项目摘要
Mutationally activated KRAS comprises the major oncogenic driver in the top three causes of cancer deaths in
the US: lung (LAC), colorectal (CRC), and pancreatic ductal adenocarcinoma (PDAC). In 2021, a milestone in
anti-KRAS drug discovery was achieved, with the first clinically effective direct inhibitor of KRAS approved, for
the treatment of KRASG12C mutant lung cancer. However, as with essentially all targeted anti-cancer therapies,
both de novo resistance and treatment-associated acquired resistance have recently been reported. As
anticipated, mutations that reactivate RAS and RAS effector signaling through the RAF-MEK-ERK mitogen-
activated protein kinase signaling network (e.g., activating mutations in BRAF, MEK1) were identified in LAC and
CRC patients treated with KRASG12C selective inhibitors (G12Ci), and combinations that concurrently target these
resistance mechanisms are now under clinical evaluation. However, no genetic mechanisms were identified in
up to 50% of patients who relapsed on G12Ci treatment. To address possible ERK MAPK-independent
resistance mechanisms, my studies have identified and validated the downstream target of the Hippo tumor
suppressor pathway, the YAP1 transcriptional coactivator and oncoprotein, as a driver of resistance to G12Ci-
mediated growth suppression. Consistent with previous studies that established the ability of YAP1 activation to
overcome addiction to mutant KRAS, my preliminary analyses demonstrated that ectopic overexpression of wild-
type or activated YAP1 drives resistance to G12Ci treatment in KRASG12C mutant LAC, CRC and PDAC cell
lines. This finding establishes the rationale and foundation for my research goal: to determine the mechanistic
basis for YAP1-mediated resistance to G12Ci treatment. I hypothesize that identification of YAP1-driven
resistance mechanisms will establish combinations of pharmacologic inhibitors that can enhance the
long-term anti-tumor efficacy of G12Ci and other KRAS-targeted therapies. I have developed three aims to
address the mechanisms by which YAP1 drives resistance. First, I will determine the role of the TEAD
transcription factors in YAP1-driven KRAS-independence. These studies may validate the clinical application of
TEAD inhibitors for the treatment of KRAS-mutant PDAC and other cancers. Second, I will identify YAP1-
regulated genes that sustain KRAS-independent growth, in support of a model where YAP1 overcomes KRAS-
addiction by restoring expression of key KRAS-regulated genes. Finally, I will identify KRAS-regulated metabolic
processes that are both sustained by YAP1 activation and important for PDAC growth. Taken together, my
studies may validate an important driver of resistance to all KRAS-targeted therapies and define therapeutic
approaches to overcome YAP1-driven drug resistance. These studies will require my application of a diverse
spectrum of experimental approaches, advance my understanding of key steps in anti-cancer drug development,
and foster my career development as an independent cancer researcher.
突变激活的 KRAS 是导致癌症死亡的三大原因中的主要致癌驱动因素
美国:肺癌(LAC)、结直肠癌(CRC)和胰腺导管腺癌(PDAC)。 2021年,具有里程碑意义
实现抗 KRAS 药物发现,首个临床有效的 KRAS 直接抑制剂获批,用于
KRASG12C突变肺癌的治疗。然而,与基本上所有靶向抗癌疗法一样,
最近报道了新发耐药和与治疗相关的获得性耐药。作为
预期的,通过 RAF-MEK-ERK 有丝分裂原重新激活 RAS 和 RAS 效应信号传导的突变
在 LAC 和
使用 KRASG12C 选择性抑制剂 (G12Ci) 以及同时针对这些抑制剂的组合治疗的 CRC 患者
耐药机制目前正在临床评估中。然而,尚未发现遗传机制
高达 50% 的患者在接受 G12Ci 治疗后复发。解决可能与 ERK MAPK 无关的问题
耐药机制,我的研究已经确定并验证了 Hippo 肿瘤的下游靶点
抑制途径、YAP1 转录辅激活因子和癌蛋白,作为 G12Ci- 耐药性的驱动因素
介导的生长抑制。与之前建立 YAP1 激活能力的研究一致
为了克服对突变型 KRAS 的成瘾,我的初步分析表明,野生型的异位过度表达
类型或激活的 YAP1 驱动 KRASG12C 突变 LAC、CRC 和 PDAC 细胞对 G12Ci 治疗的耐药性
线。这一发现为我的研究目标奠定了基本原理和基础:确定机制
YAP1 介导的 G12Ci 治疗耐药性的基础。我假设 YAP1 驱动的识别
耐药机制将建立药物抑制剂的组合,可以增强
G12Ci 和其他 KRAS 靶向疗法的长期抗肿瘤功效。我制定了三个目标
解决 YAP1 驱动抵抗的机制。首先,我将确定TEAD的角色
YAP1 驱动的 KRAS 独立性中的转录因子。这些研究可能会验证其临床应用
TEAD 抑制剂用于治疗 KRAS 突变 PDAC 和其他癌症。其次,我将识别 YAP1-
维持不依赖 KRAS 的生长的调节基因,支持 YAP1 克服 KRAS 的模型
通过恢复关键 KRAS 调节基因的表达来治疗成瘾。最后,我将确定 KRAS 调节的代谢
这些过程既由 YAP1 激活维持,又对 PDAC 生长很重要。综合起来,我的
研究可能会验证所有 KRAS 靶向疗法耐药性的重要驱动因素,并定义治疗方法
克服 YAP1 驱动的耐药性的方法。这些研究需要我应用多种方法
一系列实验方法,加深我对抗癌药物开发关键步骤的理解,
并促进我作为独立癌症研究员的职业发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Cole Edwards其他文献
Alexander Cole Edwards的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Cole Edwards', 18)}}的其他基金
Mechanisms of YAP1-driven resistance to KRAS-G12C inhibition
YAP1 驱动的 KRAS-G12C 抑制抵抗机制
- 批准号:
10537668 - 财政年份:2022
- 资助金额:
$ 3.88万 - 项目类别:
相似国自然基金
基于化学蛋白质组学的紫草素增强化疗药抗肿瘤作用靶标研究
- 批准号:82373749
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
共载肿瘤RNA/金银花多糖的外泌体仿生递药系统构建及其归巢于犬乳腺肿瘤微环境的抗肿瘤免疫机理
- 批准号:32373056
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
荷载鞭毛蛋白的载药囊泡激发中性粒细胞抗肿瘤效应及其机制研究
- 批准号:82303724
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
溶酶体靶向聚集性无药抗肿瘤纳米颗粒的研究
- 批准号:52303170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光笼型Mcl-1抑制剂前药的构建与光活化靶向抗肿瘤作用研究
- 批准号:82304305
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of YAP1-driven resistance to KRAS-G12C inhibition
YAP1 驱动的 KRAS-G12C 抑制抵抗机制
- 批准号:
10537668 - 财政年份:2022
- 资助金额:
$ 3.88万 - 项目类别:
Multi-Wavelength Fluorescence Radical Dosimetry for Real-Time Assessment of Protein Footprinting Radical Yield
用于实时评估蛋白质足迹自由基产量的多波长荧光自由基剂量测定
- 批准号:
10250755 - 财政年份:2021
- 资助金额:
$ 3.88万 - 项目类别:
In-cell Automated Flash Oxidation (IC-AutoFox™) Protein Footprinting System
细胞内自动闪式氧化 (IC-AutoFox™) 蛋白质足迹系统
- 批准号:
10589128 - 财政年份:2020
- 资助金额:
$ 3.88万 - 项目类别:
In-Cell Radical Dosimetry (ICRD) for improved in vivo Fast Photo-oxidation of Proteins Hydroxyl Radical Protein Footprinting
细胞内自由基剂量测定 (ICRD),用于改善蛋白质体内快速光氧化羟基自由基蛋白质足迹
- 批准号:
10009765 - 财政年份:2020
- 资助金额:
$ 3.88万 - 项目类别:
Mechanisms of Cell Death and Inflammation in Chemotherapy-Induced Oral Mucositis
化疗引起的口腔粘膜炎细胞死亡和炎症的机制
- 批准号:
10251626 - 财政年份:2020
- 资助金额:
$ 3.88万 - 项目类别: